Home

Awesome

ColorFormer: Image Colorization via Color Memory assisted Hybrid-attention Transformer

This is the implementation of ``ColorFormer: Image Colorization via Color Memory assisted Hybrid-attention Transformer'' (ECCV22)

Xiaozhong Ji, Boyuan Jiang, Donghao Luo, Guangpin Tao, Wenqing Chu, Zhifeng Xie, Chengjie Wang, Ying Tai

framework

This repository is heavily based on BasicSR.

Requirements

Please run this to install basicsr.

python3 setup.py develop

Inference

  1. Download pretrained weights pretrain from google drive and put the folder under './'
  2. Run
python3 inference/inference_colorformer.py --input /path/to/input --output /path/to/output --model_path pretrain/net_g_200000.pth

Train

  1. Download imagenet training set from https://www.image-net.org/, then list all the image paths in a txt file.
  2. Specify 'meta_info_file' in options/train/ECCV22/train_colorformer.yml
  3. To collect semantic and color priors, run
python3 memory_build/inference_GLH.py --input_txt image_paths.txt
python3 memory_build/semantic_color_clustering.py -m 512 -k 64
  1. For multi-gpu training, run
sh scripts/train.sh

We thank the authors of BasicSR as we train colorformer based on the awesome training pipeline.

Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020.