Awesome
Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo
This repository includes the source code for our CVPR 2021 paper on multi-view multi-person 3D pose estimation. Please read our paper for more details at https://arxiv.org/abs/2104.02273. The project webpage is available here.
Bibtex:
@InProceedings{Lin_2021_CVPR,
author = {Lin, Jiahao and Lee, Gim Hee},
title = {Multi-View Multi-Person 3D Pose Estimation With Plane Sweep Stereo},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {11886-11895}
}
Environment
Our code is tested on
- Python 3.8.5
- PyTorch 1.6.0 & torchvision 0.7.0
- CUDA 11.2
Preparing Data
Download following data before using the code in this repository:
- Annotations and 2D pose predictions for the Campus and the Shelf datasets can be downloaded here. Credit to VoxelPose.
- Follow the instructions on the CMU Panoptic Github repo to download the annotations. 2D pose predictions can be downloaded here.
- Pre-trained models can be downloaded here.
The data should be organized as follows:
ROOTDIR/
└── data/
└── Campus/
└── actorsGT.mat
└── calibration_campus.json
└── pred_campus_maskrcnn_hrnet_coco.pkl
└── Shelf/
└── actorsGT.mat
└── calibration_shelf.json
└── pred_shelf_maskrcnn_hrnet_coco.pkl
└── Panoptic/
└── 160224_haggling1/
└── 160226_haggling1/
└── ...
└── keypoints_train_results.json
└── keypoints_validation_results.json
└── panoptic_training_pose.pkl
└── output/
└── campus_synthetic/mvmppe/config/model_best_pretrained.pth.tar
└── shelf_synthetic/mvmppe/config/model_best_pretrained.pth.tar
└── panoptic/mvmppe/config/model_best_pretrained.pth.tar
└── ...
Training and Inference
Below are the commands for training our model on different datasets.
The Campus dataset:
python run/train.py --cfg configs/campus/config.yaml
The Shelf dataset:
python run/train.py --cfg configs/shelf/config.yaml
The CMU Panoptic dataset:
python run/train.py --cfg configs/panoptic/config.yaml
Below are the commands for performing inference with our pre-trained models.
The Campus dataset:
python run/validate.py --cfg configs/campus/config.yaml -t pretrained
The Shelf dataset:
python run/validate.py --cfg configs/shelf/config.yaml -t pretrained
The CMU Panoptic dataset:
python run/validate.py --cfg configs/panoptic/config.yaml -t pretrained