Home

Awesome

Z<small>ERO</small>G<small>EN</small>

This repository contains the code for our paper “ZeroGen: Efficient Zero-shot Learning via Dataset Generation”. Our implementation is built on the source code from dino. Thanks for their work.

If you use this code, please cite our paper:

@article{ye2022zerogen,
      title={ZeroGen: Efficient Zero-shot Learning via Dataset Generation}, 
      author={Jiacheng Ye and Jiahui Gao and Qintong Li and Hang Xu and Jiangtao Feng and Zhiyong Wu and Tao Yu and Lingpeng Kong},
      year={2022},
      eprint={2202.07922},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Setup

All requirements for Z<small>ERO</small>G<small>EN</small> can be found in requirements.txt. You can install all required packages in a new environment with pip install -r requirements.txt.

Usage

The scripts/run_cls.sh and scripts/run_qa.sh scripts contain the running commands for the following settings:

For text classification (TC) tasks (e.g., SST-2 and IMDb) and natural language inference (NLI) tasks (e.g., QNLI and RTE), run with bash scripts/run_cls.sh. For question answering (QA) tasks, run with bash scripts/run_qa.sh

When generating X (i.e., denotes text in TC, hypothesis in NLI and question in QA) in the final stage of the scripts, we also train the small model and evaluate it on human annotations. Specifically, after generating log_every number of examples, we perform training on the synthetic dataset and evaluation on the gold validation set. This gives as a trend graph similar to Figure 2 in the paper, which is shown by wandb, a powerful toolkit to track experiments.

Before running, you need to reset the following parameters to yours:

By default we use GPT2-XL as pre-trained language model (PLM) and DistilBERT as tiny-task model (TAM), to modify the size of PLM and TAM, you can change model_name and small_model_name in run_xxx.sh scripts.

Run with a synthesized dataset

After dataset generation, we save the synthetic dataset at:

To run DistilBERT given a generated dataset, you can use the scripts/run_distilbert.sh script.

To run a LSTM-based model given a generated dataset, you can use the scripts/run_cls_lstm.sh script. Before that, you have to download the datasets from google drive link, which contain the standard test files.

Diversity and Correctness of a synthesized dataset

Divesity

We use Self-BLEU to measure the diversity of a synthesized dataset. To calculate the Self-BLEU for a given dataset, you can see the example in scripts/run_self_bleu.sh script.

Correctness

To calculate the Correctness, you can take the following steps:

  1. Replace the following parameters in scripts/run_distilbert.sh script with:
    • small_model_name=roberta-large
    • dataset=: empty means using standard training set
    • limit=: empty means using full standard training set
    This will give you a RoBERTa-Large trained with full human annotations, which can be used as an evaluator.
  2. Replace the following parameters in scripts/run_distilbert.sh script with:
    • small_model_ckpt=tmp/checkpoint-xxx: the final RoBERTa-Large checkpoint saved in step 1.
    • limit=10000: the number of samples to use, by default 10000
    • dataset=xxx: the name of synthetic dataset (e.g., gpt2-xl_topk0_topp0.9_sst-2-x2)
    • no_train=true: disable training
    Run the script, and you will get Metric on standard dataset and Metric on synthetic dataset, which represents the Correctness of standard dataset and synthetic dataset, respectively.

Resources

We provide some synthetic datasets and standard datasets for training LSTM in this google drive link. When training DistilBERT, the standard dataset is directly downloaded by huggingface Dataset package. Note we use the same prompt for IMDb/SST-2, and SQuAD/AdversarialQA, therefore the synthetic datasets are also the same.