Awesome
Robust Out-of-distribution Detection in Neural Networks
This project is for the paper: Robust Out-of-distribution Detection in Neural Networks. Some codes are from ODIN, Outlier Exposure and deep Mahalanobis detector.
Preliminaries
It is tested under Ubuntu Linux 16.04.1 and Python 3.6 environment, and requires some packages to be installed:
Downloading in-distribution Dataset
Downloading out-of-distribution Datasets
Overview of the Code
Running Experiments
- For SVHN dataset, you can run select_svhn_data.py to select test data.
- For GTSRB dataset, you can run prepare_data.sh to get dataset.
- robust_ood_train.py: the script used to train different models.
- eval.py: the script used to evaluate classification accuracy and robustness of models.
- eval_ood_detection.py: the script used to evaluate OOD detection performance of models.
Example
For CIFAR-10 experiments, you can run the following commands on CIFAR directory to get results.
- train an ALOE model:
python robust_ood_train.py --name ALOE --adv --ood
- train an AOE model:
python robust_ood_train.py --name AOE --adv --adv-only-in --ood
- train an ADV model:
python robust_ood_train.py --name ADV --adv
- train an OE model:
python robust_ood_train.py --name OE --ood
- train an Original model:
python robust_ood_train.py --name Original
- Evaluate classification performance of ALOE model:
python eval.py --name ALOE --adv
- Evaluate the traditional OOD detection performance of MSP and ODIN using ALOE model:
python eval_ood_detection.py --name ALOE --method msp_and_odin
- Evaluate the robust OOD detection performance of MSP and ODIN using ALOE model:
python eval_ood_detection.py --name ALOE --method msp_and_odin --adv
- Evaluate the traditional OOD detection performance of Mahalanobis using Original model:
python eval_ood_detection.py --name Original --method mahalanobis
- Evaluate the robust OOD detection performance of Mahalanobis using Original model:
python eval_ood_detection.py --name Original --method mahalanobis --adv
Citation
Please cite our work if you use the codebase:
@article{chen2020robust,
title={Robust Out-of-distribution Detection in Neural Networks},
author={Chen, Jiefeng and Wu, Xi and Liang, Yingyu and Jha, Somesh and others},
journal={arXiv preprint arXiv:2003.09711},
year={2020}
}
License
Please refer to the LICENSE.