Awesome
<p align="center"> <img src="images/ID_Thumbnail.png" width="400"> <br /> <br /> </p>Model Preserving Compression for Neural Networks
A pruning method for deep networks which preserves per-example decisions beyond top-1 accuracy, using the interpolative decomposition. Our method determines per-layer compression ratios automatically, does not require fine-tuning, and can be trivially composed with any other compression method.
Also look in atom3d-Pruning.ipynb
, ComparisonsNet.ipynb
, Iter-PerClass-ClassRemoved-Figure.ipynb
for separate running examples.
First, we prune a pretrained model with ID:
from main import iditer, create_args
args = create_args()
args.arch = "VGG16"
args.seed = 2
args.prune_batch_size = 5000
args.k = 0.95 # determines reduction amount for iditer algorithm per iteration
args.log_interval = 10
args.k_args = "iditer"
iditer(args, <savedir>)
Next, we compose another compression method. For PCA (see Appendix Table 4 for citation) see the following code. Note that keep_ratio
is set to achieve a desired compression amount.
from pca import pca_prune
net = torch.load(<ID pruned model>)
try:
net = net.module
except:
net = net
pca_prune(net=net, keep_ratio=0.70, prune_size=5000, savename=<savename>)
For LRank (Appendix Table 4 for citation),
from lrank import lrank_prune
net = torch.load(<ID pruned model>)
try:
net = net.module
except:
net = net
lrank_prune(net=net, keep_ratio=0.984, prune_size=5000, savename=<savename>)
Finally to fine tune a compressed model, call the python train.py
script with the appropriate paths for the compressed model path.
python train.py
--arch vgg16 \
--epochs <epochs> \
--batch-size <batch size> \
--lr <lr> \
--momentum <momentum> \
--weight-decay <weight decay> \
--prune-batch-size 5000 \
--print-freq 5000 \
--workers 32 \
--resume <checkpoint path/checkpoint.pth.tar> \
--evalute \
--pretrained <compressed model path> \
--log_dir <logging output path> \
--tensorboard_dir <tensorboard logging path> \
--dist-url 'tcp://127.0.0.1:40781` \
--dist-backend nccl \
--seed 2 \
--multiprocessing-distributed \
--world-size 1 \
--rank 0