Home

Awesome

<div align="center">

360BEV: Panoramic Semantic Mapping for Indoor Bird’s-Eye View (IEEE/CVF WACV 2024)

</div> <p align="center"> <a href="https://arxiv.org/pdf/2303.11910.pdf"> <img src="https://img.shields.io/badge/arXiv-2303.11910-red" /></a> <a href="https://jamycheung.github.io/360BEV.html"> <img src="https://img.shields.io/badge/Project-page-green" /></a> <a href="https://pytorch.org/"> <img src="https://img.shields.io/badge/Framework-PyTorch-orange.svg" /></a> <a href="https://github.com/jamycheung/DELIVER/blob/main/LICENSE"> <img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" /></a> </p> <br />

360BEV_paradigms

Introduction

In this work, mapping from 360° panoramas to BEV semantics, the 360BEV task, is established for the first time to achieve holistic representations of indoor scenes in a top-down view. Instead of relying on narrow-FoV image sequences, a panoramic image with depth information is sufficient to generate a holistic BEV semantic map. To benchmark 360BEV, we present two indoor datasets, 360BEV-Matterport and 360BEV-Stanford, both of which include egocentric panoramic images and semantic segmentation labels, as well as allocentric semantic maps.

For more details, please check our paper.

:fire: Update

360BEV datasets

Prepare datasets:

Our extended datasets:

Data statistics of 360BEV datasets:

DatasetSceneRoomFrameCategory
train52151,04013
val15537313
360BEV-Stanford62701,41313
train61--7,82920
val7--77220
test18--2,01420
360BEV-Matterport862,03010,61520

Dataset structure:

data/
├── Stanford2D3D
│   └── area_[1|2|3|4|5a|5b|6]
│       ├── rgb/*png
│       └── semantic/*png
│
├── 360BEV-Stanford
│   ├── training
│   └── valid
│       ├── data_base_with_rotationz_realdepth/*h5
│       └── ground_truth/*h5
│
├── 360BEV-Matterport
│   ├── training
│   ├── testing
│   └── valid
│       ├── smnet_training_data_zteng/*h5
│       └── topdown_gt_real_height/*h5
│
└── 360FV-Matterport
    ├── 17DRP5sb8fy
    │   ├── depth/*png
    │   ├── rgb/*png
    │   └── semantic/*png   
    └── ...

360Mapper model

360BEV_model

Results and weights

360FV Stanford-2D3D

ModelBackboneInputmIoUweights
Trans4PASSMiT-B2RGB52.1
CBFCResNet-101RGB52.2
OursMiT-B2RGB54.3B2

360FV-Matterport

ModelBackboneInputmIoUweights
HoHoNetResNet-101RGB-D44.85
SegFormerMiT-B2RGB45.53
OursMiT-B2RGB46.35B2

360BEV-Stanford

MethodBackboneAccmRecallmPrecisionmIoUweights
Trans4MapMiT-B086.4140.4557.4732.26
Trans4MapMiT-B286.5345.2862.6136.08
OursMiT-B092.0750.1465.3742.42B0
OursMiT-B292.8053.5667.7245.78B2
OursMSCA-B92.6755.0268.0246.44MSCA-B

360BEV-Matterport

MethodBackboneAccmRecallmPrecisionmIoUweights
Trans4MapMiT-B070.1944.3150.3931.92
Trans4MapMiT-B273.2851.6053.0236.72
OursMiT-B075.4448.8056.0136.98B0
OursMiT-B278.8059.5459.9744.32B2
OursMSCA-B78.9360.5162.8346.31MSCA-B

Installation

#### To create conda env:
    conda create -n 360BEV python=3.8
    conda activate 360BEV
    cd /path/to/360BEV
    pip install -r requirements.txt

To make the model run successful, we need to install mmdetection.

Train

For example, use 4 2080Ti GPUs to run the experiments:


# 360BEV_Matterport
python train_360BEV_Matterport.py --config configs/model_360BEV_mp3d.yml

# 360BEV_S2d3d
python train_360BEV_S2d3d.py --config configs/model_360BEV_s2d3d.yml

# Stanford2D3D
python train_pano_360Attention_S2d3d.py --config configs/model_fv_s2d3d.yml

# 360FV-Matterport
python train_pano_360Attention_Matterport.py --config configs/model_fv_mp3d.yml

Test

# 360BEV_Matterport
python test_360BEV_Matterport.py --config configs/model_360BEV_mp3d.yml

# 360BEV_S2d3d
python test_360BEV_S2d3d.py --config configs/model_360BEV_s2d3d.yml

# Stanford2D3D
python test_pano_360Attention_S2d3d.py --config configs/model_fv_s2d3d.yml

# 360FV-Matterport
python test_pano_360Attention_Matterport.py --config configs/model_fv_mp3d.yml

References

We appreciate the previous open-source works.

License

This repository is under the Apache-2.0 license. For commercial use, please contact with the authors.

Citation

If you are interested in this work, please cite the following work:

@inproceedings{teng2024_360bev,
  title={360BEV: Panoramic Semantic Mapping for Indoor Bird's-Eye View}, 
  author={Teng, Zhifeng and Zhang, Jiaming and Yang, Kailun and Peng, Kunyu and Shi, Hao and Reiß, Simon and Cao, Ke and Stiefelhagen, Rainer},
  booktitle={2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
  year={2024}
}