Awesome
DDSTGCN
[Paper] [Code] [Google Scholar]
Y. Sun, X. Jiang, Y. Hu, F. Duan, K. Guo, B. Wang, J. Gao, B. Yin, "Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 23680-23693, Dec. 2022, doi: 10.1109/TITS.2022.3208943.
<p align="center"> <img width="826" height="303" src=./fig/picture.jpg> </p>Requirements
- python 3
- torch >= 1.7
- numpy
- scipy
- argparse
You can install all the requirements by python3 -m pip install -r requirements.txt
.
Train Commands
python train.py
or
python train.py --data "data/METR-LA" --adjdata "data/METR-LA/adj_mx.pkl" --in_dim 2 --num_nodes 207
To run different datasets, you need to modify the relevant parameters of the dataset, including --data
, --adjdata
, --in_dim
and --num_nodes
. The default is METR-LA dataset.
Datasets
Dataset | --data | --adjdata | --in_dim | --num_nodes |
---|---|---|---|---|
METR-LA | data/METR-LA | data/METR-LA/adj_mx.pkl | 2 | 207 |
PEMS-BAY | data/PEMS-BAY | data/PEMS-BAY/adj_mx_bay.pkl | 2 | 325 |
PEMS03 | data/PEMS03 | data/PEMS03/adj_pems03.pkl | 1 | 358 |
PEMS04 | data/PEMS04 | data/PEMS04/adj_pems04.pkl | 1 | 307 |
PEMS07 | data/PEMS07 | data/PEMS07/adj_pems07.pkl | 1 | 883 |
PEMS08 | data/PEMS08 | data/PEMS08/adj_pems08.pkl | 1 | 170 |
Download the datasets from Google Drive URL: https://drive.google.com/drive/folders/1uoY8ROQU73BqWyl566ZNdRBOOTM4T2DS?usp=sharing
Code Architecture
DDSTGCN
│ train.py
│ engine.py
│ model.py
│ util.py
│ requirements.txt
│ README.md
│ LICENSE
│
├─data
│ ├─METR-LA
│ │ adj_mx.pkl
│ │ train.npz
│ │ val.npz
│ │ test.npz
│ │
│ ├─PEMS-BAY
│ │ adj_mx_bay.pkl
│ │ train.npz
│ │ val.npz
│ │ test.npz
│ │
│ ├─PEMS03
│ │ adj_pems03.pkl
│ │ train.npz
│ │ val.npz
│ │ test.npz
│ │
│ ├─PEMS04
│ │ adj_pems04.pkl
│ │ train.npz
│ │ val.npz
│ │ test.npz
│ │
│ ├─PEMS07
│ │ adj_pems07.pkl
│ │ train.npz
│ │ val.npz
│ │ test.npz
│ │
│ └─PEMS08
│ adj_pems08.pkl
│ train.npz
│ val.npz
│ test.npz
│
├─fig
│ picture.jpg
│
└─garage
null
License
Copyright © 2022 Jiang Xiangheng
This project is licensed under the MIT license.
Contact
jiangxiangheng[at]gmail[dot]com
Citation
If our work is helpful for your research, please consider citing the following BibTeX entry in your manuscript:
@article{sun2022dual,
author={Sun, Yanfeng and Jiang, Xiangheng and Hu, Yongli and Duan, Fuqing and Guo, Kan and Wang, Boyue and Gao, Junbin and Yin, Baocai},
journal={IEEE Transactions on Intelligent Transportation Systems},
title={Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction},
year={2022},
volume={23},
number={12},
pages={23680-23693},
publisher={IEEE},
doi={10.1109/TITS.2022.3208943}
}