Awesome
Fine-grained Image Captioning with CLIP Reward
- Authors: Jaemin Cho, David Seunghyun Yoon, Ajinkya Kale, Franck Dernoncourt, Trung Bui, Mohit Bansal
- Findings of NAACL 2022 Paper
- (Inference using pretrained model on custom image)
- Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo
- Try Replicate web demo and docker image here <img src="./assets/teaser.png" alt="teaser image" width="800"/>
Code structure
# Configurations
./configs/
# MLE
phase1/
# RL
phase2/
# COCO caption evaluation
./cider
./coco-caption
# Preprocessing
./clip # CLIP feature extractor
./scripts # COCO preprocessing
./scripts_FineCapEval # FineCapEval preprocessing
./data # Storing preprocessed features
# Core model / Rewards / Data loading
./captioning
# Training / Evaluation
./tools
# Fine-tuning CLIP Text encoder
./retrieval
# Pretrained checkpoints
./save
# Storing original dataset files
./datasets
Setup
Install Dependencies
# Create python environment (optional)
conda create -n clip4caption python=3.7
source activate clip4caption
# python dependenceies
pip install -r requirements.txt
## Install this repo as package
pip install -e .
# Install Detectron2 (optional for training utilities)
pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
# Setup coco-caption (optional for text metric evaluation)
git clone https://github.com/clip-vil/cider
git clone https://github.com/clip-vil/coco-caption
cd coco-caption
bash get_stanford_models.sh
bash get_google_word2vec_model.sh
# Install java (optional for METEOR evaluation as part of text metrics)
sudo apt install default-jre
Download Pretrained models
We host model checkpoints via google drive.
Download checkpoints as below.
The .ckpt
file size for captioning and CLIP models are 669.65M and 1.12G, respectively.
# Captioning model
./save/
clipRN50_cider/
clipRN50_cider-last.ckpt
clipRN50_cider_clips/
clipRN50_cider_clips-last.ckpt
clipRN50_clips/
clipRN50_clips-last.ckpt
clipRN50_clips_grammar/
clipRN50_clips_grammar-last.ckpt
clipRN50_mle/
clipRN50_mle-last.ckpt
# Finetuned CLIP Text encoder
./retrieval/
save/
clip_negative_text-last.ckpt
Dataset preparation
# Original dataset files - to be downloaded
./datasets/
# Download from http://mscoco.org/dataset/#download
COCO/
images/
train2014/
val2014/
annotations/
captions_train2014.json
captions_val2014.json
# Download from https://drive.google.com/drive/folders/1jlwInAsVo-PdBdJlmHKPp34dLnxIIMLx
FineCapEval/
images/
XXX.jpg
MS COCO
- Download files
./datasets/
# Download from http://mscoco.org/dataset/#download
COCO/
images/
train2014/
val2014/
annotations/
captions_train2014.json
captions_val2014.json
./data/
# Download from http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip
dataset_coco.json
# Download from from https://drive.google.com/drive/folders/1eCdz62FAVCGogOuNhy87Nmlo5_I0sH2J
coco-train-words.p
- Text processing
python scripts/prepro_labels.py --input_json data/dataset_coco.json --output_json data/cocotalk.json --output_h5 data/cocotalk
- Visual feature extraction
python scripts/clip_prepro_feats.py --input_json data/dataset_coco.json --output_dir data/cocotalk --images_root datasets/COCO/images --model_type RN50
# optional (n_jobs)
--n_jobs 4 --job_id 0
- Visual fetaure extraction for CLIP-S Reward
python scripts/clipscore_prepro_feats.py --input_json data/dataset_coco.json --output_dir data/cocotalk --images_root datasets/COCO/images
# optional (n_jobs)
--n_jobs 4 --job_id 0
FineCapEval
- Download files from https://drive.google.com/drive/folders/1jlwInAsVo-PdBdJlmHKPp34dLnxIIMLx?usp=sharing
./datasets/
FineCapEval/
images/
XXX.jpg
./data/
FineCapEval.json
FineCapEval.csv
- Visual feature extraction
python scripts_FineCapEval/clip_prepro_feats.py --input_json data/FineCapEval.json --output_dir data/FineCapEval --images_root datasets/FineCapEval/images --model_type RN50
# optional (n_jobs)
--n_jobs 4 --job_id 0
Training and Evaluation
1) MLE training
export MLE_ID='clipRN50_mle'
# Training
python tools/train_pl.py --cfg configs/phase1/$MLE_ID.yml --id $MLE_ID
# Evaluation
EVALUATE=1 python tools/train_pl.py --cfg configs/phase1/$MLE_ID.yml --id $MLE_ID
# Text-to-Iage Retrieval with CLIP VIT-B/32
python tools/eval_clip_retrieval.py --gen_caption_path "./eval_results/$MLE_ID.json"
# Evaluation on FineCapEval
python tools/finecapeval_inference.py --reward mle
python tools/eval_finecapeval.py --generated_id2caption ./FineCapEval_results/clipRN50_mle.json
2) RL finetuning
Reward: CIDEr
export REWARD='cider'
export MLE_ID='clipRN50_mle'
export RL_ID='clipRN50_'$REWARD
# Copy MLE checkpoint as starting point of RL finetuning
mkdir save/$RL_ID
cp save/$MLE_ID/$MLE_ID-last.ckpt save/$RL_ID/$RL_ID-last.ckpt
# Training
python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Evaluation
EVALUATE=1 python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Text-to-Iage Retrieval with CLIP VIT-B/32
python tools/eval_clip_retrieval.py --gen_caption_path "./eval_results/$RL_ID.json"
# Evaluation on FineCapEval
python tools/finecapeval_inference.py --reward $REWARD
python tools/eval_finecapeval.py --generated_id2caption ./FineCapEval_results/$RL_ID.json
Reward: CLIP-S
export REWARD='clips'
export MLE_ID='clipRN50_mle'
export RL_ID='clipRN50_'$REWARD
# Copy MLE checkpoint as starting point of RL finetuning
mkdir save/$RL_ID
cp save/$MLE_ID/$MLE_ID-last.ckpt save/$RL_ID/$RL_ID-last.ckpt
# Training
python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Evaluation
EVALUATE=1 python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Text-to-Iage Retrieval with CLIP VIT-B/32
python tools/eval_clip_retrieval.py --gen_caption_path "./eval_results/$RL_ID.json"
# Evaluation on FineCapEval
python tools/finecapeval_inference.py --reward $REWARD
python tools/eval_finecapeval.py --generated_id2caption ./FineCapEval_results/$RL_ID.json
Reward: CLIP-S + CIDEr
export REWARD='clips_cider'
export MLE_ID='clipRN50_mle'
export RL_ID='clipRN50_'$REWARD
# Copy MLE checkpoint as starting point of RL finetuning
mkdir save/$RL_ID
cp save/$MLE_ID/$MLE_ID-last.ckpt save/$RL_ID/$RL_ID-last.ckpt
# Training
python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Evaluation
EVALUATE=1 python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Text-to-Iage Retrieval with CLIP VIT-B/32
python tools/eval_clip_retrieval.py --gen_caption_path "./eval_results/$RL_ID.json"
# Evaluation on FineCapEval
python tools/finecapeval_inference.py --reward $REWARD
python tools/eval_finecapeval.py --generated_id2caption ./FineCapEval_results/$RL_ID.json
Reward: CLIP-S + Grammar
-
Run CLIP Finetuning (for grammar) following ./retrieval/README.md
-
Run RL training using the updated CLIP
export REWARD='clips_grammar'
export MLE_ID='clipRN50_mle'
export RL_ID='clipRN50_'$REWARD
# Copy MLE checkpoint as starting point of RL finetuning
mkdir save/$RL_ID
cp save/$MLE_ID/$MLE_ID-last.ckpt save/$RL_ID/$RL_ID-last.ckpt
# Training
python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Evaluation
EVALUATE=1 python tools/train_pl.py --cfg configs/phase2/$RL_ID.yml --id $RL_ID
# Text-to-Iage Retrieval with CLIP VIT-B/32
python tools/eval_clip_retrieval.py --gen_caption_path "./eval_results/$RL_ID.json"
# Evaluation on FineCapEval
python tools/finecapeval_inference.py --reward $REWARD
python tools/eval_finecapeval.py --generated_id2caption ./FineCapEval_results/$RL_ID.json
Acknowledgments
We thank the developers of CLIP-ViL, ImageCaptioning.pytorch, CLIP, coco-caption, cider for their public code release.
Reference
Please cite our paper if you use our models in your works:
@inproceedings{Cho2022CLIPReward,
title = {Fine-grained Image Captioning with CLIP Reward},
author = {Jaemin Cho and Seunghyun Yoon and Ajinkya Kale and Franck Dernoncourt and Trung Bui and Mohit Bansal},
booktitle = {Findings of NAACL},
year = {2022}
}