Home

Awesome

Recent Trends of Entity Linking

This repository aims to track the progress in Entity Linking. Studies on how to prepare Entity Representations are also listed, as Entity Representations are mandatory with Entity Linking.

Contents

Sub Contents


Trends (NAACL'21 and ICLR'21)

Trends (~EMNLP'20 and CoNLL'20)

Trends(~ACL'20)

Trends (~ICLR'20)


Trends (~EMNLP'19, CoNLL'19, ICLR'19)

Models for Entity Linking

Entity Representation

<a name="DenseEnt"></a>


Trends (~ACL'19)


Baselines (~ACL'18)

Baseline modelsYearDatasetcodeRun?Code address
Entity Linking via Joint Encoding of Types,Descriptions,and ContextEMNLP2017CoNLL-YAGO(82.9,acc),ACE2004,ACE2005,WIKI(89.0,f1)TensorflowOnly Traind model is uploadedhere
┗ (Very Similar to the above) Joint Multilingual Supervision for Cross-lingual Entity LinkingEMNLP2018TH-Test,McN-Test,TAC2015PytorchCheckinghere
Neural Collective Entity Linking(NCEL)CL2018CoNLL-YAGO, ACE2004, AQUAINT,TAC2010(91.0,mic-p),WWpytorchBughere
Improving Entity Linking by Modeling Latent Relations between MentionsACL2018CoNLL-YAGO(93.07,mic-acc),AQUAINT,ACE2004,CWEB,WIKI(84.05,f1)pytorchEvaluation Donehere
ELDENNAACL2018CoNLL-PPD(93.0,p-mic),TAC2010(89.6,mic-p)lua,torch(lua)Bughere
Deep Joint Entity Disambiguation with Local Neural AttentionEMNLP2017CoNLL-YAGO(92.22,mic-acc),CWEB,WW,ACE2004,AQUAINT,MSNBClua,torch(lua)Train Running(2019/01/15)here
Hierarchical Losses and New Resources for Fine-grainid Entity Typing and LinkingACL2018Medmentions,TypenetpytorchBughere
Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation(Yamada,Shindo)CoNLL2016CoNLL-YAGO(91.5,mic-acc),CoNLL-PPD(93.1,p-mic),TAC2010(85.5,mic-acc)pytorch/Tensorflow(original),checkingBaseline Original
Learning Distributed Representations of Texts and Entities from Knowledge Base(Yamada,Shindo)ACL2017CoNLL-PPD(94.7,p-mic),TAC2010(87.7,mic-acc)pytorch/Keras(original)checkingTorch, Torch, Original

Datasets

General

Note: major datasets for benchmarking this task are listed at BLINK repository.

Multilingual

Domain-Specific


Bi-Encoder vs Cross-Encoder


How to Get/Prepare Entity Representations?

<img src='./img/entrep.png' width=700>

Another Trend: BERT x KB


Entity Linking Introductions

<img src='./img/intro.png' width=700> <img src='./img/procedure.png' width=700>

Local Model and Global Model

Trend in the Point of local vs global

<img src='./img/localvsglobal.png' width=700>

What is local/global Model?

<img src='./img/local.png' width=700> <img src='./img/global.png' width=700>

Misc