Home

Awesome

Audiomentations

Build status Code coverage Code Style: Black Licence: MIT DOI

A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products.

Need a Pytorch-specific alternative with GPU support? Check out torch-audiomentations!

Setup

Python version support PyPI version Number of downloads from PyPI per month os: Linux, macOS, Windows

pip install audiomentations

Usage example

from audiomentations import Compose, AddGaussianNoise, TimeStretch, PitchShift, Shift
import numpy as np

augment = Compose([
    AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),
    TimeStretch(min_rate=0.8, max_rate=1.25, p=0.5),
    PitchShift(min_semitones=-4, max_semitones=4, p=0.5),
    Shift(p=0.5),
])

# Generate 2 seconds of dummy audio for the sake of example
samples = np.random.uniform(low=-0.2, high=0.2, size=(32000,)).astype(np.float32)

# Augment/transform/perturb the audio data
augmented_samples = augment(samples=samples, sample_rate=16000)

Documentation

The API documentation, along with guides, example code, illustrations and example sounds, is available at https://iver56.github.io/audiomentations/

Transforms

Changelog

[0.38.0] - 2024-12-06

Added

Changed

Removed

For example:

Old (deprecated since v0.31.0)New
Gain(min_gain_in_db=-12.0)Gain(min_gain_db=-12.0)

Fixed

For the full changelog, including older versions, see https://iver56.github.io/audiomentations/changelog/

Acknowledgements

Thanks to Nomono for backing audiomentations.

Thanks to all contributors who help improving audiomentations.