Awesome
ELEDNet (ECCV 2024)
Official repository for the ECCV 2024 paper, "Towards Real-world Event-guided Low-light Video Enhancement and Deblurring."
Currently, this pages only includes information about the dataset and paper. I will soon be sharing more details on this pages.
Video Demos
Downloading the RELED datasets
Please download and unzip the RELED dataset.
- [RELED-Train] / [RELED-Test]
The dataset follows the below directory format:
├── RELED/
├── train/
│ ├── 0000/
│ │ ├── blur_processed/
│ │ │ ├── 00000.png
│ │ │ ├── ...
│ │ │ └── 00148.png
│ │ ├── gt_processed/
│ │ │ ├── 00000.png
│ │ │ ├── ...
│ │ │ └── 00148.png
│ │ ├── events/
│ │ │ ├── 00000.npz
│ │ │ ├── ...
│ │ │ └── 00148.npz
│ │ └── event_voxel/
│ │ ├── 00000.npz
│ │ ├── ...
│ │ └── 00148.npz
│ ├── 0001/
│ │ ├── ...
├── test/
│ ├── 0000/
│ │ ├── ...
│ ├── 0001/
│ │ ├── ...
Sub-directory Descriptions:
- blur_processed: Contains low-light blurred images (
*.png
files). - gt_processed: Contains normal-light sharp images (
*.png
files). - events: Contains raw event data in
.npz
format. - event_voxel: Contains event voxel data in
.npz
format.
Reading Raw Event Data (events
) and Event Voxel Data(event_voxel
):
To read event
and event voxel
data from .npz
files using Python and NumPy:
import numpy as np
# Replace YOUR_EVENT_DIR with the path to the directory containing the .npz files for events
event_data = np.load('YOUR_EVENT_DIR/*.npz')['data']
Contact
If you have any question, please send an email to taewoo(intelpro@kaist.ac.kr)
License
The project codes and datasets can be used for research and education only.