Home

Awesome

<!-- ~ Copyright 2018 Intel Corporation ~ ~ Licensed under the Apache License, Version 2.0 (the "License"); ~ you may not use this file except in compliance with the License. ~ You may obtain a copy of the License at ~ ~ http://www.apache.org/licenses/LICENSE-2.0 ~ ~ Unless required by applicable law or agreed to in writing, software ~ distributed under the License is distributed on an "AS IS" BASIS, ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ~ See the License for the specific language governing permissions and ~ limitations under the License. --> <div align="center">

Intel(R) Extension for Scikit-learn*

<h3> Speed up your scikit-learn applications for Intel(R) CPUs and GPUs across single- and multi-node configurations

Releases   |   Documentation   |   Examples   |   Support   |  License   

Build Status Coverity Scan Build Status Join the community on GitHub Discussions PyPI Version Conda Version python version scikit-learn supported versions


</h3> <div align="left">

Overview

Intel(R) Extension for Scikit-learn is a free software AI accelerator designed to deliver over 10-100X acceleration to your existing scikit-learn code. The software acceleration is achieved with vector instructions, AI hardware-specific memory optimizations, threading, and optimizations for all upcoming Intel(R) platforms at launch time.

With Intel(R) Extension for Scikit-learn, you can:

Intel(R) Extension for Scikit-learn is also a part of Intel(R) AI Tools.

Acceleration

Benchmarks code

Intel(R) Optimizations

:eyes: Check out available notebooks for more examples.

Installation

To install Intel(R) Extension for Scikit-learn, run:

pip install scikit-learn-intelex

See all installation instructions in the Installation Guide.

Integration

The software acceleration is achieved through patching. It means, replacing the stock scikit-learn algorithms with their optimized versions provided by the extension.

The patching only affects supported algorithms and their parameters. You can still use not supported ones in your code, the package simply fallbacks into the stock version of scikit-learn.

TIP: Enable verbose mode to see which implementation of the algorithm is currently used.

To patch scikit-learn, you can:

:eyes: Read about other ways to patch scikit-learn.

Documentation

daal4py and oneDAL

The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library (oneDAL). Learn more:

Samples & Examples

How to Contribute

We welcome community contributions, check our Contributing Guidelines to learn more.


* The Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.