Awesome
[CVPR2024] SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting
Paper Arxiv | Paper CVF | Video Youtube | Project Page
Official Repository for CVPR 2024 paper SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting.
<img src="assets/SplattingAvatar-demo.gif" width="800"/> <!-- - Overview --> <img src="assets/SplattingAvatar-teaser.jpg" width="800"/> <!-- - Framework --> <img src="assets/SplattingAvatar-framework.jpg" width="800"/>Lifted optimization
The embedding points of 3DGS on the triangle mesh are updated by the walking on triangle scheme.
See the phongsurface
module implemented in c++ and pybind11.
<img src="assets/SplattingAvatar-triangle.jpg" width="800"/>
Getting Started
- Create conda env with pytorch.
conda create -n splatting python=3.9
conda activate splatting
# pytorch 1.13.1+cu117 is tested
pip install torch==1.13.1 torchvision torchaudio functorch --extra-index-url https://download.pytorch.org/whl/cu117
# pytorch3d
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
pip install -e .
# install other dependencies
pip install tqdm omegaconf opencv-python libigl
pip install trimesh plyfile imageio chumpy lpips
pip install packaging pybind11
pip install numpy==1.23.1
- Clone this repo recursively. Install Gaussian Splatting's submodules.
git clone --recursive https://github.com/initialneil/SplattingAvatar.git
cd SplattingAvatar
cd submodules/diff-gaussian-rasterization
pip install .
cd ../submodules/simple-knn
pip install .
cd ..
- Install
simple_phongsurf
for walking on triangles.
cd model/simple_phongsurf
pip install -e .
-
Download FLAME model, choose FLAME 2020 and unzip it, copy 'generic_model.pkl' into
./model/imavatar/FLAME2020
, -
Download SMPL model (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl model/smplx_utils/smplx_models/smpl/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl model/smplx_utils/smplx_models/smpl/SMPL_MALE.pkl
Preparing dataset
We provide the preprocessed data of the 10 subjects used in the paper.
- Our preprocessing followed IMavatar and replaced the Segmentation with RobustVideoMatting.
Pre-trained checkpoints are provided together with the data.- Please find the data from https://github.com/Zielon/INSTA. We'll update the checkpoint link soon.
Training
python train_splatting_avatar.py --config configs/splatting_avatar.yaml --dat_dir <path/to/subject>
# for example:
python train_splatting_avatar.py --config configs/splatting_avatar.yaml --dat_dir /path-to/bala
# you may specify gpu id by adding CUDA_VISIBLE_DEVICES=x before calling python:
CUDA_VISIBLE_DEVICES=0 python train_splatting_avatar.py ...
# to disable network_gui, set ip to 'none'
CUDA_VISIBLE_DEVICES=0 python train_splatting_avatar.py ... --ip none
# use SIBR_remoteGaussian_app.exe from 3DGS to watch the training
SIBR_remoteGaussian_app.exe --path <path/to/output_of_any_standard_3dgs>
# <output_of_any_standard_3dgs> is generated by running the original 3dgs on any original dataset
# SIBR_remoteGaussian_app.exe somehow requires a standard 3dgs output to start
# it is recommended to change "FPS" to "Trackball" in the viewer
# you don't need to change the "path" everytime
Evaluation
python eval_splatting_avatar.py --config configs/splatting_avatar.yaml --dat_dir <path/to/model_path>
# for example:
python eval_splatting_avatar.py --config configs/splatting_avatar.yaml --dat_dir /path-to/bala/output-splatting/last_checkpoint
Full-body Avatar
We conducted experiments on PeopleSnapshot.
- Please download the parameter files (the same with InstantAvatar) from: Baidu Disk or Google Drive.
- Download 4 sequences from PeopleSnapshot (male/female-3/4-casual) and unzip
images
andmasks
to corresponding folders from above. - Use
scripts/preprocess_PeopleSnapshot.py
to preprocess the data. - Training:
# override with instant_avatar.yaml for PeopleSnapshot in InstantAvatar's format
python train_splatting_avatar.py --config "configs/splatting_avatar.yaml;configs/instant_avatar.yaml" --dat_dir <path/to/subject>
# for example:
python train_splatting_avatar.py --config "configs/splatting_avatar.yaml;configs/instant_avatar.yaml" --dat_dir /path-to/female-3-casual
# pretrained checkpoints provided in `output-splatting/last_checkpoint` can be evaluated by `eval_splatting_avatar.py`
# for example:
python eval_splatting_avatar.py --config "configs/splatting_avatar.yaml;configs/instant_avatar.yaml" --dat_dir /path-to/female-3-casual --pc_dir /path-to/female-3-casual/output-splatting/last_checkpoint/point_cloud/iteration_30000
# to animate to noval pose `aist_demo.npz`
python eval_animate.py --config "configs/splatting_avatar.yaml;configs/instant_avatar.yaml" --dat_dir /path-to/female-3-casual --pc_dir /path-to/female-3-casual/output-splatting/last_checkpoint/point_cloud/iteration_30000 --anim_fn /path-to/aist_demo.npz
GPU requirement
We conducted our experiments on a single NVIDIA RTX 3090 with 24GB. Training with less GPU memory can be achieved by setting a maximum number of Gaussians.
# in configs/splatting_avatar.yaml
model:
max_n_gauss: 300000 # or less as needed
or set by command line
python train_splatting_avatar.py --config configs/splatting_avatar.yaml --dat_dir <path/to/subject> model.max_n_gauss=300000
Citation
If you find our code or paper useful, please cite as:
@inproceedings{shao2024splattingavatar,
title = {{SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting}},
author = {Shao, Zhijing and Wang, Zhaolong and Li, Zhuang and Wang, Duotun and Lin, Xiangru and Zhang, Yu and Fan, Mingming and Wang, Zeyu},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2024}
}
Acknowledgement
We thank the following authors for their excellent works!
License
SplattingAvatar <br> The code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for Noncommercial use only. Any commercial use should get formal permission first.
Gaussian Splatting <br> Inria and the Max Planck Institut for Informatik (MPII) hold all the ownership rights on the Software named gaussian-splatting. The Software is in the process of being registered with the Agence pour la Protection des Programmes (APP).