Awesome
<h2 align="center">Learning Pedestrian Group Representations for<br>Multi-modal Trajectory Prediction</h2> <p align="center"> <a href="https://InhwanBae.github.io/"><strong>Inhwan Bae</strong></a> · <a href="https://scholar.google.com/citations?user=0B-YoigAAAAJ"><strong>Jin-Hwi Park</strong></a> · <a href="https://scholar.google.com/citations?user=Ei00xroAAAAJ"><strong>Hae-Gon Jeon</strong></a> <br> ECCV 2022 </p> <p align="center"> <a href="https://inhwanbae.github.io/publication/gpgraph/"><strong><code>Project Page</code></strong></a> <a href="https://arxiv.org/abs/2207.09953"><strong><code>ECCV Paper</code></strong></a> <a href="https://github.com/InhwanBae/GPGraph"><strong><code>Source Code</code></strong></a> <a href="#-citation"><strong><code>Related Works</code></strong></a> </p> <div align='center'> <br> <img src="img/gpgraph-teaser-animated.webp" width=45%> <img src="img/gpgraph-hierarchy-animated.webp" width=45%> </div><br>This repository contains the code for unsupervised group estimation applied to the trajectory prediction models.
<br>🧑🤝🧑 GP-Graph Architecture 🧑🤝🧑
- Learns to assign each pedestrian into the most likely behavior group in an unsupervised manner.
- Pedestrian group pooling&unpooling and group hierarchy graph for group behavior modeling.
- Group-level latent vector sampling strategy to share the latent vector between group members.
Model Training
Setup
Environment <br>All models were trained and tested on Ubuntu 20.04 with Python 3.7 and PyTorch 1.9.0 with CUDA 11.1.
Dataset
<br>Preprocessed ETH and UCY datasets are included in this repository, under ./dataset/
.
The train/validation/test splits are the same as those fond in Social-GAN.
Baseline models
<br>This repository supports the SGCN baseline trajectory predictor.
We have included model source codes from their official GitHub in model_baseline.py
Train GP-Graph
To train our GPGraph-SGCN on the ETH and UCY datasets at once, we provide a bash script train.sh
for a simplified execution.
./train.sh
We provide additional arguments for experiments:
./train.sh -t <experiment_tag> -d <space_seperated_dataset_string> -i <space_seperated_gpu_id_string>
# Examples
./train.sh -d "hotel" -i "1"
./train.sh -t onescene -d "hotel" -i "1"
./train.sh -t allinonegpu -d "eth hotel univ zara1 zara2" -i "0 0 0 0 0"
If you want to train the model with custom hyper-parameters, use train.py
instead of the script file.
Model Evaluation
Pretrained Models
We have included pretrained models in the ./checkpoints/
folder.
Evaluate GP-Graph
You can use test.py
to evaluate our GPGraph-SGCN model.
python test.py
📖 Citation
If you find this code useful for your research, please cite our trajectory prediction papers :)
💬 LMTrajectory (CVPR'24) 🗨️
|
1️⃣ SingularTrajectory (CVPR'24) 1️⃣
|
🌌 EigenTrajectory (ICCV'23) 🌌
|
🚩 Graph‑TERN (AAAI'23) 🚩
|
🧑🤝🧑 GP‑Graph (ECCV'22) 🧑🤝🧑
|
🎲 NPSN (CVPR'22) 🎲
|
🧶 DMRGCN (AAAI'21) 🧶
@inproceedings{bae2022gpgraph,
title={Learning Pedestrian Group Representations for Multi-modal Trajectory Prediction},
author={Bae, Inhwan and Park, Jin-Hwi and Jeon, Hae-Gon},
booktitle={Proceedings of the European Conference on Computer Vision},
year={2022}
}
<details>
<summary>More Information (Click to expand)</summary>
@inproceedings{bae2024lmtrajectory,
title={Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction},
author={Bae, Inhwan and Lee, Junoh and Jeon, Hae-Gon},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}
@inproceedings{bae2024singulartrajectory,
title={SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model},
author={Bae, Inhwan and Park, Young-Jae and Jeon, Hae-Gon},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}
@inproceedings{bae2023eigentrajectory,
title={EigenTrajectory: Low-Rank Descriptors for Multi-Modal Trajectory Forecasting},
author={Bae, Inhwan and Oh, Jean and Jeon, Hae-Gon},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2023}
}
@article{bae2023graphtern,
title={A Set of Control Points Conditioned Pedestrian Trajectory Prediction},
author={Bae, Inhwan and Jeon, Hae-Gon},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2023}
}
@inproceedings{bae2022npsn,
title={Non-Probability Sampling Network for Stochastic Human Trajectory Prediction},
author={Bae, Inhwan and Park, Jin-Hwi and Jeon, Hae-Gon},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2022}
}
@article{bae2021dmrgcn,
title={Disentangled Multi-Relational Graph Convolutional Network for Pedestrian Trajectory Prediction},
author={Bae, Inhwan and Jeon, Hae-Gon},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021}
}
</details>
Acknowledgement
Part of our code is borrowed from SGCN. We thank the authors for releasing their code and models.