Awesome
mxnet一键式训练自己的数据
mxnet应用到工业项目大概包括收集数据、转换数据、定义模型、训练模型和评估模型等几个步骤,这里以常见的车牌字符识别为例讲解怎么用mxnet一键式训练自己的数据
1.mxnet安装
现在已经非常简单,装好python和pip后一句代码就能搞定:
pip install mxnet
如果需要从源码编译安装,可以参照官网和[mxnet VS2015编译.pdf](mxnet VS2015编译.pdf)
2.数据准备
chars文件夹是从车牌识别的开源项目easypr中提取的数字0和1的字符样本,为了简单起见,我只提取了2类样本,其实一共有65类之多(字母+数字+汉字),不过只需要把图片文件拷贝过去就好,后面的操作基本一致。
数据是参考ImageNet的格式组织的,也就是所有的图片按照类别分组,相同类别的放入同一文件夹下,最后这些不同类别的文件夹放到一个文件夹(示例为platechars,是开源项目EasyPR中车牌字符的训练样本)。
接下来需要转换为mxnet所需的格式,也就是rec格式,mxnet自带的im2rec.py就是完成此功能的,此外,还需要生成训练样本的字典文件synset.txt,也就是有哪些类别。
完成以上这些功能的代码被封装成了preprocess.bat:
echo "Generating lst"
python preprocess/im2rec.py platechars/chars platechars --recursive=True --list=True
echo "Generating rec"
python preprocess/im2rec.py platechars/chars platechars
echo "Generating synsetwords"
python preprocess/generatesynsetwords.py --datadir=platechars
其中参数的含义是:数据存放的文件夹、所生成数据列表的文件名前缀(后缀默认是lst)、是否递归处理(也就是进入子文件夹),是否生成list文件。
当然你也可以下载已经转换好的文件 密码:9qq8,约15M.
3.定义模型
需要定义网络的结构,训练时batch大小、迭代次数和学习率等和训练相关的参数。 示例采用的是lenet的结构,
def get_lenet():
LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
Haffner. "Gradient-based learning applied to document recognition."
Proceedings of the IEEE (1998)
data = mx.symbol.Variable('data')
# first conv
conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20)
tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh")
pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max",
kernel=(2,2), stride=(2,2))
# second conv
conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50)
tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh")
pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max",
kernel=(2,2), stride=(2,2))
# first fullc
flatten = mx.symbol.Flatten(data=pool2)
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh")
# second fullc
fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=34)
# loss
lenet = mx.symbol.SoftmaxOutput(data=fc2, name='softmax')
return lenet
4.训练模型
定义训练相关的参数,例如batch大小、迭代次数以及学习率和使用的GPU等。
def main():
batch_size=1000
num_epoch = 200
num_gpus = 1
logging.basicConfig(level=logging.DEBUG)
gpus = [mx.gpu(i) for i in range(num_gpus)]
lenet=get_lenet()
model = mx.model.FeedForward(ctx=gpus, symbol=lenet, num_epoch=num_epoch,
learning_rate=0.01, momentum=0.9, wd=0.0001,
initializer=mx.init.Uniform(0.07))
train_dataiter = mx.io.ImageRecordIter(
path_imgrec=datadir+"/chars_train.rec",
mean_img=datadir+"/mean.bin",
rand_crop=True,
rand_mirror=True,
data_shape=(3,20,20),
batch_size=batch_size,
preprocess_threads=1)
test_dataiter = mx.io.ImageRecordIter(
path_imgrec=datadir+"/chars_val.rec",
mean_img=datadir+"/mean.bin",
rand_crop=False,
rand_mirror=False,
data_shape=(3,20,20),
batch_size=batch_size,
preprocess_threads=1)
model.fit(X=train_dataiter, eval_data=test_dataiter,
batch_end_callback=mx.callback.Speedometer(100))
model.save(datadir+'/lenetweights',num_epoch)
前述两部分的代码可通过train.bat进行训练,生成的模型文件存于platachars/lenetweights-0200.params,其中200是迭代的次数。
5.评估模型
实际应用中需根据训练的结果对训练样本的分类结果进行调整以提升分类精度,因此找到错误分类的样本就显得尤为重要。
evaluation.bat会读取训练样本所在的文件夹,遍历输出分类结果,并把所有分错的样本保存在error下相应的文件夹下,每个错误样本的命名由三部分组成: 原始文件名 + "_" + 真值 + "_" + 预 测值。
例如evaluation/error下1的文件夹中,397_0_1.jpg代表其原始文件为1下的397.jpg,本来应该是0,训练模型错误的将其分类为1。
以上所有步骤均可自动化实现,因此封装了oneclick.bat,可一键式预处理、训练和评估。
6.工程化应用
charstest.py里面已经包含了用于预测输出的代码,可以提取需要的部分加入到自己的工程中去。
7.FAQ
Win7编译c++生成的测试例子不能运行,在win10下能正常运行,原因待查。