Awesome
Bert Embeddings
[Deprecated] Thank you for checking this project. Unfortunately, I don't have time to maintain this project anymore. If you are interested in maintaing this project. Please create an issue and let me know.
BERT, published by Google, is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA.
The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding.
This project is implemented with @MXNet. Special thanks to @gluon-nlp team.
Install
pip install bert-embedding
# If you want to run on GPU machine, please install `mxnet-cu92`.
pip install mxnet-cu92
Usage
from bert_embedding import BertEmbedding
bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.
Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.
As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.
BERT is conceptually simple and empirically powerful.
It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%."""
sentences = bert_abstract.split('\n')
bert_embedding = BertEmbedding()
result = bert_embedding(sentences)
If you want to use GPU, please import mxnet and set context
import mxnet as mx
from bert_embedding import BertEmbedding
...
ctx = mx.gpu(0)
bert = BertEmbedding(ctx=ctx)
This result is a list of a tuple containing (tokens, tokens embedding)
For example:
first_sentence = result[0]
first_sentence[0]
# ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers']
len(first_sentence[0])
# 18
len(first_sentence[1])
# 18
first_token_in_first_sentence = first_sentence[1]
first_token_in_first_sentence[1]
# array([ 0.4805648 , 0.18369392, -0.28554988, ..., -0.01961522,
# 1.0207764 , -0.67167974], dtype=float32)
first_token_in_first_sentence[1].shape
# (768,)
OOV
There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding.
...
bert_embedding = BertEmbedding()
bert_embedding(sentences, 'sum')
...
Available pre-trained BERT models
book_corpus_wiki_en_uncased | book_corpus_wiki_en_cased | wiki_multilingual | wiki_multilingual_cased | wiki_cn | |
---|---|---|---|---|---|
bert_12_768_12 | ✓ | ✓ | ✓ | ✓ | ✓ |
bert_24_1024_16 | x | ✓ | x | x | x |
Example of using the large pre-trained BERT model from Google
from bert_embedding import BertEmbedding
bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased')
Source: gluonnlp