Home

Awesome


title: "Essential Java Design Principles for Developers" shortTitle: Java Design Principles description: "Discover the key principles behind effective Java design patterns. This page provides clear insights into the theory and practice of Java design principles for better software development." language: en

Introduction to Programming Principles

There are certain universal laws and principles in software development that guide architects, programmers, and anyone needing to design software. This page lists quite a few of those principles, although it's far from complete. This page is a fork of programming-principles repository by Lars Kappert, who has done most of the work collecting the material.

KISS

Most systems work best if they are kept simple rather than made complex.

Why

Resources

YAGNI

YAGNI stands for "you aren't gonna need it": don't implement something until it is necessary.

Why

How

Resources

Do The Simplest Thing That Could Possibly Work

Why

How

Resources

Separation of Concerns

Separation of concerns is a design principle for separating a computer program into distinct sections, such that each section addresses a separate concern. For example the business logic of the application is a concern and the user interface is another concern. Changing the user interface should not require changes to business logic and vice versa.

Quoting Edsger W. Dijkstra (1974):

It is what I sometimes have called "the separation of concerns", which, even if not perfectly possible, is yet the only available technique for effective ordering of one's thoughts, that I know of. This is what I mean by "focusing one's attention upon some aspect": it does not mean ignoring the other aspects, it is just doing justice to the fact that from this aspect's point of view, the other is irrelevant.

Why

How

Resources

Keep things DRY

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

Each significant piece of functionality in a program should be implemented in just one place in the source code. Where similar functions are carried out by distinct pieces of code, it is generally beneficial to combine them into one by abstracting out the varying parts.

Why

How

Resources

Related

Code For The Maintainer

Why

How

Resources

Avoid Premature Optimization

Quoting Donald Knuth:

Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.

Understanding what is and isn’t "premature" is critical of course.

Why

How

Resources

Minimise Coupling

Coupling between modules/components is their degree of mutual interdependence; lower coupling is better. In other words, coupling is the probability that code unit "B" will "break" after an unknown change to code unit "A".

Why

How

Resources

Law of Demeter

Don't talk to strangers.

Why

How

A method of an object may only call methods of:

  1. The object itself.
  2. An argument of the method.
  3. Any object created within the method.
  4. Any direct properties/fields of the object.

Resources

Composition Over Inheritance

Why

How

Resources

Orthogonality

The basic idea of orthogonality is that things that are not related conceptually should not be related in the system.

Source: Be Orthogonal

It is associated with simplicity; the more orthogonal the design, the fewer exceptions. This makes it easier to learn, read and write programs in a programming language. The meaning of an orthogonal feature is independent of context; the key parameters are symmetry and consistency.

Source: Orthogonality

Robustness Principle

Be conservative in what you do, be liberal in what you accept from others

Collaborating services depend on each others interfaces. Often the interfaces need to evolve causing the other end to receive unspecified data. A naive implementation refuses to collaborate if the received data does not strictly follow the specification. A more sophisticated implementation will still work ignoring the data it does not recognize.

Why

How

Resources

Inversion of Control

Inversion of Control is also known as the Hollywood Principle, "Don't call us, we'll call you". It is a design principle in which custom-written portions of a computer program receive the flow of control from a generic framework. Inversion of control carries the strong connotation that the reusable code and the problem-specific code are developed independently even though they operate together in an application.

Why

How

Resources

Maximise Cohesion

Cohesion of a single module/component is the degree to which its responsibilities form a meaningful unit; higher cohesion is better.

Why

How

Resources

Liskov Substitution Principle

The LSP is all about expected behavior of objects:

Objects in a program should be replaceable with instances of their subtypes without altering the correctness of that program.

Resources

Open/Closed Principle

Software entities (e.g. classes) should be open for extension, but closed for modification. I.e. such an entity can allow its behavior to be modified without altering its source code.

Why

How

Resources

Single Responsibility Principle

A class should never have more than one reason to change.

Long version: Every class should have a single responsibility, and that responsibility should be entirely encapsulated by the class. Responsibility can be defined as a reason to change, so a class or module should have one, and only one, reason to change.

Why

How

Resources

Hide Implementation Details

A software module hides information (i.e. implementation details) by providing an interface, and not leak any unnecessary information.

Why

How

Resources

Curly's Law

Curly's Law is about choosing a single, clearly defined goal for any particular bit of code: Do One Thing.

Encapsulate What Changes

A good design identifies the hotspots that are most likely to change and encapsulates them behind an API. When an anticipated change then occurs, the modifications are kept local.

Why

How

Resources

Interface Segregation Principle

Reduce fat interfaces into multiple smaller and more specific client specific interfaces. An interface should be more dependent on the code that calls it than the code that implements it.

Why

How

Resources

Boy-Scout Rule

The Boy Scouts of America have a simple rule that we can apply to our profession: "Leave the campground cleaner than you found it". The boy-scout rule states that we should always leave the code cleaner than we found it.

Why

How

Resources

Command Query Separation

The Command Query Separation principle states that each method should be either a command that performs an action or a query that returns data to the caller but not both. Asking a question should not modify the answer.

With this principle applied the programmer can code with much more confidence. The query methods can be used anywhere and in any order since they do not mutate the state. With commands one has to be more careful.

Why

How

Resources

Murphy's Law

Anything that can go wrong will go wrong.

It seems to be a universal law that when there is even the smallest possibility of something going wrong, it eventually will go wrong. It makes total sense when we think about probabilities and an infinite amount of trials. The law also applies to software development.

Resources

Brooks's Law

Adding manpower to a late software project makes it later.

The law is related to software project management and was introduced by Fred Brooks in his famous book 'The Mythical Man-Month'. The essence of the law is that adding new developers to a software project does not make them productive immediately but conversely takes time from the other team members due to communication overhead.

Resources

Linus's Law

Given enough eyeballs, all bugs are shallow.

The law is originating from the book 'The Cathedral and the Bazaar' by Eric S. Raymond and was named in honor of the famous Finnish inventor of Linux operating system, Linus Torvalds. It's basically a praise to software reviewing process where multiple developers inspect the piece of code before it's accepted and merged.

Resources