Awesome
CoIns
PyTorch Implementation for Our ICCV'21 Paper: "Weakly Supervised Representation Learning with Coarse Labels"
Requirements
- Python 3.8
- PyTorch 1.7
Usage: MoCo-v2 + Coarse Labels
- CoIns Model Training
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python coins_train.py \
-j 32 \
-a resnet50 \
--lr 0.03 \
-p 1000 \
--batch-size 256 \
--coarse-loss-w 0.5 \
--mlp --moco-t 0.2 --aug-plus --cos \
--log coins_e200_coarse_w_0.5 \
--dist-url 'tcp://localhost:'${RANDOM} --multiprocessing-distributed --world-size 1 --rank 0 \
[your imagenet-folder with train and val folders] | tee log/coins_e200_coarse_w_0.5.log
- Linear Classification: official implementation from MoCo
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_lincls.py \
-a resnet50 \
-j 32 \
--lr 30.0 \
--batch-size 256 \
--pretrained [path to your CoIns model] \
--dist-url 'tcp://localhost:'${RANDOM} --multiprocessing-distributed --world-size 1 --rank 0 \
[your imagenet-folder with train and val folders]
- Retrieval Evaluation
CUDA_VISIBLE_DEVICES=0 \
python coins_eval.py \
--gpu 0 \
--pretrained [path to your CoIns model] \
[your imagenet-folder with val folder]
Model:
CoIns: Google Drive
Citation
If you use the package in your research, please cite our paper:
@inproceedings{xu2021wk,
author = {Yuanhong Xu and
Qi Qian and
Hao Li and
Rong Jin and
Juhua Hu},
title = {Weakly Supervised Representation Learning with Coarse Labels},
booktitle = {{IEEE} International Conference on Computer Vision, {ICCV} 2021},
year = {2021}
}