Awesome
UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking
Overview
Paper
Jonathon Luiten*, Idil Esen Zulfikar*, Bastian Leibe, "UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking", WACV 2020
Requirements
This code is written in Python 3.6 and the following modules are required:
- cv2
- PIL
- pycocotools
- scipy
- yaml
- pytorch
Usage
Before running this code, prepare JSON files that contain mask, optical flow vector and ReID vector for each object proposal in a sequence.
- To generate masks for object proposals, we use this Mask R-CNN implementation.
- To extract Optical flow vector and ReID vector,we use ReID network and Optical-flow network in PremVOS.
An example json file can be downloaded from this link.
Afterwards, check your directory with JSON files to match this expected format:
proposals/
val/
bike-packing/
00000.json
...
00079.json
Finally, run the code:
python main.py --proposal_dir ../proposals/ --output_dir ../results/ --config ../configs/unovost.yaml
Citation
@inproceedings{luiten2020unovost,
title={UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking},
author={Luiten, Jonathon and Zulfikar, Idil Esen and Leibe, Bastian},
booktitle={Proceedings of the IEEE Winter Conference on Applications in Computer Vision},
year={2020}
}
Contact
If you encounter any problems within the code or have any questions, please get in touch with Idil Esen Zulfikar (zuelfikar at vision dot rwth-aachen dot de) or Jonathon Luiten (luiten at vision dot rwth-aachen dot de).