Home

Awesome

<div align="center"> Chasing Faster ConvNet for Efficient Super-Resolution </div>

Overview: The repository records a path of chasing faster ConvNet.

The repo is still under construction!


☁️ EFDN for NTIRE 2022 ESR

Edge-enhanced Feature Distillation Network for Efficient Super-Resolution
Yan Wang
Nankai University

<a href="https://arxiv.org/abs/2204.08759" alt="arXiv"> <img src="https://img.shields.io/badge/arXiv-2204.08759-b31b1b.svg?style=flat" /></a> <a href="https://data.vision.ee.ethz.ch/cvl/ntire22/posters/Wang_Edge_074-poster-Edge-enhanced%20Feature%20Distillation%20Network%20for%20Efficient%20Super-Resolution.pdf" alt="Poster"> <img src="https://img.shields.io/badge/poster-NTIRE 2022-brightgreen" /></a> <a href="https://github.com/icandle/EFDN" alt="Poster"> <img src="https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fatrox%2Fsync-dotenv%2Fbadge%3Fref%3Dmaster&style=flat" /></a> </p>

Summary: 5th solution of Model Complexity in the NTIRE 2022 Challenge on Efficient Super-Resolution. Involoving the modification of convolution and network architecture.

🌥️ PFDN for NTIRE 2023 ESR

Partial Feature Distillation Network for Efficient Super-Resolution
Yan Wang, Erlin Pan, Qixuan Cai, Xinan Dai
Nankai University, University of Electronic Science and Technology of China, Tianjin University

<a href="https://openaccess.thecvf.com/content/CVPR2023W/NTIRE/papers/Li_NTIRE_2023_Challenge_on_Efficient_Super-Resolution_Methods_and_Results_CVPRW_2023_paper" alt="Report"> <img src="https://img.shields.io/badge/report-NTIRE 2023-367DBD" /></a> <a href="https://github.com/icandle/PlainUSR/blob/main/2023_PFDN_NTIRE/factsheet/08-PFDN-Factsheet.pdf"> <img src="https://img.shields.io/badge/docs-factsheet-8A2BE2" /></a> <a href="https://github.com/icandle/PlainUSR/blob/main/models/team08_PFDN.py" alt="Report"> <img src="https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fatrox%2Fsync-dotenv%2Fbadge%3Fref%3Dmaster&style=flat" /></a> </p>

Summary: Winner of Overall Evaluation and 4th of Runtime in the NTIRE 2023 Challenge on Efficient Super-Resolution. Involoving the modification of convolution and network architecture.

<sub> Model </sub><sub> Runtime[ms] </sub><sub> Params[M] </sub><sub> Flops[G] </sub><sub> Acts[M] </sub><sub> GPU Mem[M] </sub>
RFDN35.540.43327.10112.03788.13
PFDN20.490.27216.7665.10296.45

⛅️ PFDNLite for NTIRE 2024 ESR

Lightening Partial Feature Distillation Network for Efficient Super-Resolution
Yan Wang, Yi Liu, Qing Wang, Gang Zhang, Liou Zhang, Shijie Zhao
Nankai University, ByteDance

<a href="https://openaccess.thecvf.com/content/CVPR2024W/NTIRE/papers/Ren_The_Ninth_NTIRE_2024_Efficient_Super-Resolution_Challenge_Report_CVPRW_2024_paper.pdf" alt="Report"> <img src="https://img.shields.io/badge/report-NTIRE 2024-367DBD" /></a> <a href="https://github.com/icandle/BSR/blob/main/factsheet/NTIRE_2024_ESR.pdf"> <img src="https://img.shields.io/badge/docs-factsheet-8A2BE2" /></a> <a href="https://github.com/icandle/BSR" alt="Report"> <img src="https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fatrox%2Fsync-dotenv%2Fbadge%3Fref%3Dmaster&style=flat" /></a> </p>

Summary: 3rd of Overall Evaluation and 3rd of Runtime in the NTIRE 2024 Challenge on Efficient Super-Resolution. Involoving the modification of convolution, attention and network pruning.

To be updated.

🌤️ PlainUSR for ACCV 2024

PlainUSR: Chasing Faster ConvNet for Efficient Super-Resolution
Yan Wang, Yusen Li<sup></sup>, Gang Wang, Xiaoguang Liu
Nankai University

<a href="https://arxiv.org/abs/2409.13435" alt="arXiv"> <img src="https://img.shields.io/badge/arXiv-2409.13435-b31b1b.svg?style=flat" /></a> <a href="https://github.com/icandle/PlainUSR/blob/main/LICENSE" alt="license"> <img src="https://img.shields.io/badge/license-MIT--License-%23B7A800" /></a> </p>

Summary: we present PlainUSR incorporating three pertinent modifications (convolution, attention, and backbone) to expedite ConvNet for efficient SR.

To be updated.

☀️ PlainUSRv2

To be updated.

💖 Acknowledgments

We would thank BasicSR, ECBSR, DBB, ETDS, FasterNet, etc, for their enlightening work!

🎓 Citation

@inproceedings{wang2022edge,
  title={Edge-enhanced Feature Distillation Network for Efficient Super-Resolution},
  author={Wang, Yan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  pages={777--785},
  year={2022}
}

@article{wang2024plainusr,
  title={PlainUSR: Chasing Faster ConvNet for Efficient Super-Resolution},
  author={Wang, Yan and Li, Yusen and Wang, Gang and Liu, Xiaoguang},
  journal={arXiv preprint arXiv:2409.13435},
  year={2024}
}