Home

Awesome

Multi-relational Poincaré Graph Embeddings

Multi-relational link prediction in the Poincaré ball model of hyperbolic space.

<p align="center"> <img src="https://raw.githubusercontent.com/ibalazevic/multirelational-poincare/master/murp_vs_mure.png"/ width=700> </p>

This codebase contains PyTorch implementation of the paper:

Multi-relational Poincaré Graph Embeddings. Ivana Balažević, Carl Allen, and Timothy M. Hospedales. Neural Information Processing Systems (NeurIPS), 2019. [Paper]

Link Prediction Results

ModelDatasetdimMRRHits@10Hits@3Hits@1
MuRPWN18RR400.4770.5550.4890.438
MuRPWN18RR2000.4810.5660.4950.440
MuREWN18RR400.4590.5280.4740.429
MuREWN18RR2000.4750.5540.4870.436
MuRPFB15k-237400.3240.5060.3560.235
MuRPFB15k-2372000.3350.5180.3670.243
MuREFB15k-237400.3150.4930.3460.227
MuREFB15k-2372000.3360.5210.3700.245

Running a model

To run the model, execute the following command:

 CUDA_VISIBLE_DEVICES=0 python main.py --model poincare --dataset WN18RR --num_iterations 500 
                                       --nneg 50 --batch_size 128 --lr 50 --dim 40 

Available datasets are:

FB15k-237
WN18RR

To reproduce the results from the paper, use learning rate 50 for WN18RR and learning rate 10 for FB15k-237.

Requirements

The codebase is implemented in Python 3.6.6. Required packages are:

numpy      1.15.1
pytorch    1.0.1

Citation

If you found this codebase useful, please cite:

@inproceedings{balazevic2019multi,
title={Multi-relational Poincar$\backslash$'e Graph Embeddings},
author={Bala{\v{z}}evi{\'c}, Ivana and Allen, Carl and Hospedales, Timothy},
booktitle={Advances in Neural Information Processing Systems},
year={2019}
}