Awesome
Multi-relational Poincaré Graph Embeddings
Multi-relational link prediction in the Poincaré ball model of hyperbolic space.
<p align="center"> <img src="https://raw.githubusercontent.com/ibalazevic/multirelational-poincare/master/murp_vs_mure.png"/ width=700> </p>This codebase contains PyTorch implementation of the paper:
Multi-relational Poincaré Graph Embeddings. Ivana Balažević, Carl Allen, and Timothy M. Hospedales. Neural Information Processing Systems (NeurIPS), 2019. [Paper]
Link Prediction Results
Model | Dataset | dim | MRR | Hits@10 | Hits@3 | Hits@1 |
---|---|---|---|---|---|---|
MuRP | WN18RR | 40 | 0.477 | 0.555 | 0.489 | 0.438 |
MuRP | WN18RR | 200 | 0.481 | 0.566 | 0.495 | 0.440 |
MuRE | WN18RR | 40 | 0.459 | 0.528 | 0.474 | 0.429 |
MuRE | WN18RR | 200 | 0.475 | 0.554 | 0.487 | 0.436 |
MuRP | FB15k-237 | 40 | 0.324 | 0.506 | 0.356 | 0.235 |
MuRP | FB15k-237 | 200 | 0.335 | 0.518 | 0.367 | 0.243 |
MuRE | FB15k-237 | 40 | 0.315 | 0.493 | 0.346 | 0.227 |
MuRE | FB15k-237 | 200 | 0.336 | 0.521 | 0.370 | 0.245 |
Running a model
To run the model, execute the following command:
CUDA_VISIBLE_DEVICES=0 python main.py --model poincare --dataset WN18RR --num_iterations 500
--nneg 50 --batch_size 128 --lr 50 --dim 40
Available datasets are:
FB15k-237
WN18RR
To reproduce the results from the paper, use learning rate 50 for WN18RR and learning rate 10 for FB15k-237.
Requirements
The codebase is implemented in Python 3.6.6. Required packages are:
numpy 1.15.1
pytorch 1.0.1
Citation
If you found this codebase useful, please cite:
@inproceedings{balazevic2019multi,
title={Multi-relational Poincar$\backslash$'e Graph Embeddings},
author={Bala{\v{z}}evi{\'c}, Ivana and Allen, Carl and Hospedales, Timothy},
booktitle={Advances in Neural Information Processing Systems},
year={2019}
}