Awesome
S-Prompts
Evaluation code for S-Prompts "S-Prompts Learning with Pre-trained Transformers: An Occam’s Razor for Domain Incremental Learning"
Enviroment setup
Create a conda env:
conda env create -f environments.yaml
Getting pretrained models
Pretrained Model for CDDB:
https://drive.google.com/file/d/1MXoBpVnGe_1aHQRLL9-VcdkDoTfeXOiM/view?usp=sharing
Pretrained Model for CORe50:
https://drive.google.com/file/d/1HD7auESA89zOxdDUN0hFeAVPvOPWUAgV/view?usp=sharing
Pretrained Model for DomainNet:
https://drive.google.com/file/d/1qDWMnxyVXNCRCmNls1lrB3k4UleON_w4/view?usp=sharing
Preparing data
Please refer to the following links to download and prepare data.
CDDB:
https://github.com/Coral79/CDDB
CORe50:
https://vlomonaco.github.io/core50/index.html#dataset
DomainNet:
http://ai.bu.edu/M3SDA/
After unzipping downloaded files, the file structure should be as shown below.
DeepFake_Data
├── biggan
│ ├── test
│ ├── train
│ └── val
├── gaugan
│ ├── test
│ ├── train
│ └── val
├── san
│ ├── test
│ ├── train
│ └── val
├── whichfaceisreal
│ ├── test
│ ├── train
│ └── val
├── wild
│ ├── test
│ ├── train
│ └── val
... ...
core50
└── core50_128x128
├── labels.pkl
├── LUP.pkl
├── paths.pkl
├── s1
├── s10
├── s11
├── s2
├── s3
├── s4
├── s5
├── s6
├── s7
├── s8
└── s9
domainnet
├── clipart
│ ├── aircraft_carrier
│ ├── airplane
│ ├── alarm_clock
│ ├── ambulance
│ ├── angel
│ ├── animal_migration
│ ... ...
├── clipart_test.txt
├── clipart_train.txt
├── infograph
│ ├── aircraft_carrier
│ ├── airplane
│ ├── alarm_clock
│ ├── ambulance
│ ... ...
├── infograph_test.txt
├── infograph_train.txt
├── painting
│ ├── aircraft_carrier
│ ├── airplane
│ ├── alarm_clock
│ ├── ambulance
│ ├── angel
│ ... ...
... ...
Launching experiments
python eval.py --resume ./deepfake.pth --dataroot [YOUR PATH]/DeepFake_Data/ --datatype deepfake
python eval.py --resume ./core50.pth --dataroot [YOUR PATH]/core50_128x128 --datatype core50
python eval.py --resume ./domainnet.pth --dataroot [YOUR PATH]/domainnet --datatype domainnet