Awesome
HD-LoA Prompting
This repository contains the code for our paper:
"LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction" (ACL 2024)
Data
DocEE dataset can be download from this GitHub repository.
Please ensure data directory follows the structure below:
HD_LoA/
├── RAMS/
│ └── RAMS_1_0/
│ └── data/
│ ├── train.jsonlines
│ ├── dev.jsonlines
│ └── test.jsonlines
└── DocEE/
└── data/
├── normal_setting/
│ ├── train.json
│ ├── dev.json
│ └── test.json
└── cross_domain_setting/
├── train_source_domain.json
├── train_targe_domain.json
└── dev_targe_domain.json
└── test_targe_domain.json
Run Experiment
To run HD-LoA prompting using the following command:
python main.py --dataset_name <dataset> --data_type <type> --model_type <model>
Acknowledgment
The code for accuracy evaluation is from PAIE. We appreciate their excellent contributions!
Citation
If you find our work useful, please consider citing:
@inproceedings{hdloaprompting2024,
title={LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction},
author={Zhou, Hanzhang and
Qian, Junlang and
Feng, Zijian and
Lu, Hui and
Zhu, Zixiao and
Mao, Kezhi},
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)"},
year={2024}
}