Awesome
RMNet
This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation.
Cite this work
@inproceedings{xie2021efficient,
title={Efficient Regional Memory Network for Video Object Segmentation},
author={Xie, Haozhe and
Yao, Hongxun and
Zhou, Shangchen and
Zhang, Shengping and
Sun, Wenxiu},
booktitle={CVPR},
year={2021}
}
Datasets
We use the ECSSD, COCO, PASCAL VOC, MSRA10K, DAVIS, and YouTube-VOS datasets in our experiments, which are available below:
- ECSSD Images / Masks
- COCO Images / Masks
- PASCAL VOC
- MSRA10K
- DAVIS 2017 Train/Val
- DAVIS 2017 Test-dev
- YouTube-VOS
Pretrained Models
The pretrained models for DAVIS and YouTube-VOS are available as follows:
- RMNet for DAVIS (202 MB)
- RMNet for YouTube-VOS (202 MB)
Prerequisites
Clone the Code Repository
git clone https://github.com/hzxie/RMNet.git
Install Python Denpendencies
cd RMNet
pip install -r requirements.txt
Build PyTorch Extensions
NOTE: PyTorch >= 1.4, CUDA >= 9.0 and GCC >= 4.9 are required.
RMNET_HOME=`pwd`
cd $RMNET_HOME/extensions/reg_att_map_generator
python setup.py install --user
cd $RMNET_HOME/extensions/flow_affine_transformation
python setup.py install --user
Precompute the Optical Flow
- For the DAVIS dataset, the optical flows are computed by FlowNet2-CSS with the model pretrained on FlyingThings3D.
- For the YouTube-VOS dataset, the optical flows are computed by RAFT with the model pretrained on Sintel.
Update Settings in config.py
You need to update the file path of the datasets:
__C.DATASETS = edict()
__C.DATASETS.DAVIS = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH = '/path/to/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH = '/path/to/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH = '/path/to/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH = '/path/to/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH = '/path/to/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH = '/path/to/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH = '/path/to/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH = '/path/to/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH = '/path/to/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH = '/path/to/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD = edict()
__C.DATASETS.ECSSD.N_IMAGES = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH = '/path/to/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH = '/path/to/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH = '/path/to/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH = '/path/to/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH = '/path/to/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH = '/path/to/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'
# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO'] # Pretrain
__C.DATASET.TRAIN_DATASET = ['YOUTUBE_VOS', 'DAVISx5'] # Fine-tune
__C.DATASET.TEST_DATASET = 'DAVIS'
# Network Options: RMNet, TinyFlowNet
__C.TRAIN.NETWORK = 'RMNet'
Get Started
To train RMNet, you can simply use the following command:
python3 runner.py
To test RMNet, you can use the following command:
python3 runner.py --test --weights=/path/to/pretrained/model.pth
License
This project is open sourced under MIT license.