Awesome
Paper
Yihao Zhao, Ruihai Wu, Hao Dong, "Unpaired Image-to-Image Translation using Adversarial Consistency Loss", ECCV 2020
arXiv: https://arxiv.org/abs/2003.04858
Code usage
For environment:
conda env create -f acl-gan.yaml
For training:
python train.py --config configs/male2female.yaml
For test:
python test.py --config configs/male2female.yaml --input inputs/test_male.jpg --checkpoint ./models/test.pth
Experimental Results
Ablation study
<img src="figures/ablation_study.png" alt="ablation_study" style="zoom:50%;" />Male-to-female
<img src="figures/male2female.png" alt="male2female" style="zoom:50%;" />Glasses Removal
<img src="figures/glasses_removal.png" alt="glasses_removal" style="zoom:50%;" />Selfie-to-anime
<img src="figures/selfie2anime.png" alt="selfie2anime" style="zoom:50%;" />For more results, please refer to our paper.
Citation
If you find this code useful for your research, please cite our paper:
@inproceedings{zhao2020aclgan,
title={Unpaired Image-to-Image Translation using Adversarial Consistency Loss},
author={Zhao, Yihao and Wu, Ruihai and Dong, Hao},
booktitle={ECCV},
year={2020}
}