Awesome
<div align="center"> <h1> HAIS </h1> <span><font size="5", > Hierarchical Aggregation for 3D Instance Segmentation [ICCV 2021] </font></span> <br>by <br>Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang</a><sup><span>†</span></sup>. (<span>†</span>: corresponding author)
<div>Paper: <a href="https://arxiv.org/abs/2108.02350">[arXiv version] </a><a href="https://openaccess.thecvf.com/content/ICCV2021/papers/Chen_Hierarchical_Aggregation_for_3D_Instance_Segmentation_ICCV_2021_paper.pdf"> [ICCV21 version]</a></div> <div>Presentation: <a href="https://drive.google.com/file/d/1zDBqMBHrB077VbJUZdMY1D0LbtdjgpSi/view?usp=sharing">[ICCV21 presentation] </a></div> <div align="center"> <img src="docs/scene0249_00_output_2.gif" width="70%" /> <!-- <img src="docs/scene0430_00_output_2.gif" width="48%" /> --> </div> <br> </div>Update
2022.4.28:
- HAIS serves as a baseline of STPLS3D dataset. Code of HAIS on STPLS3D is available on <a href="https://github.com/meidachen/STPLS3D">[this Github repo] </a>. STPLS3D is a large-scale photogrammetry 3D point cloud dataset, composed of high-quality, rich-annotated point clouds from real-world and synthetic environments.
2021.9.30:
- Code is released.
- With better CUDA optimization, HAIS now only takes 339 ms on TITAN X, much better than the latency reported in the paper (410 ms on TITAN X).
Introduction
- HAIS is an efficient and concise bottom-up framework (NMS-free and single-forward) for point cloud instance segmentation. It adopts the hierarchical aggregation (point aggregation and set aggregation) to generate instances and the intra-instance prediction for outlier filtering and mask quality scoring.
- High performance. HAIS ranks 1st on the ScanNet benchmark (Aug. 8th, 2021).
- High speed. Thanks to the NMS-free and single-forward inference design, HAIS achieves the best inference speed among all existing methods. HAIS only takes 206 ms on RTX 3090 and 339 ms on TITAN X.
Method | Per-frame latency on TITAN X |
---|---|
ASIS | 181913 ms |
SGPN | 158439 ms |
3D-SIS | 124490 ms |
GSPN | 12702 ms |
3D-BoNet | 9202 ms |
GICN | 8615 ms |
OccuSeg | 1904 ms |
PointGroup | 452 ms |
HAIS | 339 ms |
Installation
1) Environment
- Python 3.x
- Pytorch 1.1 or higher
- CUDA 9.2 or higher
- gcc-5.4 or higher
Create a conda virtual environment and activate it.
conda create -n hais python=3.7
conda activate hais
2) Clone the repository.
git clone https://github.com/hustvl/HAIS.git --recursive
3) Install the requirements.
cd HAIS
pip install -r requirements.txt
conda install -c bioconda google-sparsehash
4) Install spconv
-
Verify the version of spconv.
spconv 1.0, compatible with CUDA < 11 and pytorch < 1.5, is already recursively cloned in
HAIS/lib/spconv
in step 2) by default.For higher version CUDA and pytorch, spconv 1.2 is suggested. Replace
HAIS/lib/spconv
with this fork of spconv.
git clone https://github.com/outsidercsy/spconv.git --recursive
Note: In the provided spconv 1.0 and 1.2, spconv\spconv\functional.py is modified to make grad_output contiguous. Make sure you use the modified spconv but not the original one. Or there would be some bugs of optimization.
- Install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # (optional, install gcc-5.4 in conda env)
- Compile the spconv library.
cd HAIS/lib/spconv
python setup.py bdist_wheel
- Intall the generated .whl file.
cd HAIS/lib/spconv/dist
pip install {wheel_file_name}.whl
5) Compile the external C++ and CUDA ops.
cd HAIS/lib/hais_ops
export CPLUS_INCLUDE_PATH={conda_env_path}/hais/include:$CPLUS_INCLUDE_PATH
python setup.py build_ext develop
{conda_env_path} is the location of the created conda environment, e.g., /anaconda3/envs
.
Data Preparation
1) Download the ScanNet v2 dataset.
2) Put the data in the corresponding folders.
-
Copy the files
[scene_id]_vh_clean_2.ply
,[scene_id]_vh_clean_2.labels.ply
,[scene_id]_vh_clean_2.0.010000.segs.json
and[scene_id].aggregation.json
into thedataset/scannetv2/train
anddataset/scannetv2/val
folders according to the ScanNet v2 train/val split. -
Copy the files
[scene_id]_vh_clean_2.ply
into thedataset/scannetv2/test
folder according to the ScanNet v2 test split. -
Put the file
scannetv2-labels.combined.tsv
in thedataset/scannetv2
folder.
The dataset files are organized as follows.
HAIS
├── dataset
│ ├── scannetv2
│ │ ├── train
│ │ │ ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│ │ ├── val
│ │ │ ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│ │ ├── test
│ │ │ ├── [scene_id]_vh_clean_2.ply
│ │ ├── scannetv2-labels.combined.tsv
3) Generate input files [scene_id]_inst_nostuff.pth
for instance segmentation.
cd HAIS/dataset/scannetv2
python prepare_data_inst.py --data_split train
python prepare_data_inst.py --data_split val
python prepare_data_inst.py --data_split test
Training
CUDA_VISIBLE_DEVICES=0 python train.py --config config/hais_run1_scannet.yaml
Inference
1) To evaluate on validation set,
- prepare the
.txt
instance ground-truth files as the following.
cd dataset/scannetv2
python prepare_data_inst_gttxt.py
-
set
split
andeval
in the config file asval
andTrue
. -
Run the inference and evaluation code.
CUDA_VISIBLE_DEVICES=0 python test.py --config config/hais_run1_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$
Pretrained model: Google Drive / Baidu Cloud [code: sh4t]. mAP/mAP50/mAP25 is 44.1/64.4/75.7.
2) To evaluate on test set,
- Set (
split
,eval
,save_instance
) as (test
,False
,True
). - Run the inference code. Prediction results are saved in
HAIS/exp
by default.
CUDA_VISIBLE_DEVICES=0 python test.py --config config/hais_run1_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$
- Transform the prediction results into the submission format.
- Submit the results to the official evaluation server.
Visualization
We provide visualization tools based on Open3D (tested on Open3D 0.8.0).
pip install open3D==0.8.0
python visualize_open3d.py --data_path {} --prediction_path {} --data_split {} --room_name {} --task {}
Please refer to visualize_open3d.py
for more details.
Demo:
<div align="center"> <!-- <img src="docs/scene0249_00_output_2.gif" width="48%" /> --> <img src="docs/scene0430_00_output_2.gif" width="70%" /> </div>Acknowledgement
The code is based on PointGroup and spconv. And thank STPLS3D for extending HAIS.
Contact
If you have any questions or suggestions about this repo, please feel free to contact me (shaoyuchen@hust.edu.cn).
Citing HAIS
If you find HAIS is useful in your research or applications, please consider giving us a star 🌟 and citing HAIS by the following BibTeX entry.
@InProceedings{Chen_HAIS_2021_ICCV,
author = {Chen, Shaoyu and Fang, Jiemin and Zhang, Qian and Liu, Wenyu and Wang, Xinggang},
title = {Hierarchical Aggregation for 3D Instance Segmentation},
booktitle = {ICCV},
year = {2021},
}