Home

Awesome

Adaptively Aligned Image Captioning via Adaptive Attention Time

This repository includes the implementation for Adaptively Aligned Image Captioning via Adaptive Attention Time.

Requirements

Training AAT

Prepare data (with python2)

See details in data/README.md.

(notes: Set word_count_threshold in scripts/prepro_labels.py to 4 to generate a vocabulary of size 10,369.)

You should also preprocess the dataset and get the cache for calculating cider score for SCST:

$ python scripts/prepro_ngrams.py --input_json data/dataset_coco.json --dict_json data/cocotalk.json --output_pkl data/coco-train --split train

Training

$ sh train-aat.sh

See opts.py for the options.

Evaluation

$ CUDA_VISIBLE_DEVICES=0 python eval.py --model log/log_aat_rl/model.pth --infos_path log/log_aat_rl/infos_aat.pkl  --dump_images 0 --dump_json 1 --num_images -1 --language_eval 1 --beam_size 2 --batch_size 100 --split test

Reference

If you find this repo helpful, please consider citing:

@inproceedings{huang2019adaptively,
  title = {Adaptively Aligned Image Captioning via Adaptive Attention Time},
  author = {Huang, Lun and Wang, Wenmin and Xia, Yaxian and Chen, Jie},
  booktitle = {Advances in Neural Information Processing Systems 32},
  year={2019}
}

Acknowledgements

This repository is based on Ruotian Luo's self-critical.pytorch.