Awesome
Geoseg - A Computer Vision Package for Automatic Building Segmentation and Outline extraction
Table of Contents
- <a href='#requirements'>Requirements</a>
- <a href='#organization'>Organization</a>
- <a href='#models'>Models</a>
- <a href='#usage'>Usage</a>
- <a href='#performance'>Performance</a>
- <a href='#visualization'>Visualization</a>
- <a href='#todo'>TODO</a>
- <a href='#citation'>Citation</a>
Requirements
- Pytorch == 0.4.1
- Python 3
Organization
Geoseg
├── data/
│ └── original image tiles
├── dataset/
│ └── image&mask slices from data
├── checkpoint/
│ └── pre-trained models
├── logs/
│ ├── curve
│ └── raw
│ └── snapshot
│ speed.csv
├── result/
│ └── quantitative & qualitative result
├── src/
├── __init__.py
├── models
│ └── network archs. FCNs, UNet, etc.
├── estrain.py
├── losses.py
├── metrics.py
├── runner.py
├── test.py
├── train.py
└── vision.py
Models
Usage
- Download repo.
git clone https://github.com/huster-wgm/geoseg.git
- Download data => NZ32km2
Google Drive or <del> Baidu Yun <del>
- Download data => Vaihingen
Details about the datasets can be found at <a href='#citation'>Citation</a>.
- Download pre-trainded models (FCNs)
- On NZ32km2(Binary building segmentation) Google Drive
- On ISPRS Vaihingen (6-class segmentation) Google Drive
(Only FCN8s, 16s, and 32s. Others here)
- Step-by-step tutorial
Jupyter-notebook LINK
Performance
Visualization
- BR-Net on NZ32km2
TODO
- Update training & testing data
- Add support for more dataset
Citation
- NZ32km2 dataset
The location, scale, resolution and preprocessing of the NZ32km2 dataset please refer to paper.LINK
@article{wu2018boundary,
title={A boundary regulated network for accurate roof segmentation and outline extraction},
author={Wu, Guangming and Guo, Zhiling and Shi, Xiaodan and Chen, Qi and Xu, Yongwei and Shibasaki, Ryosuke and Shao, Xiaowei},
journal={Remote Sensing},
volume={10},
number={8},
pages={1195},
year={2018},
publisher={Multidisciplinary Digital Publishing Institute}
}
- ISPRS Vaihingen dataset
The location, scale, resolution and preprocessingof the ISPRS Vaihingen dataset please refer to paper.LINK
@article{wu2019stacked,
title={A Stacked Fully Convolutional Networks with Feature Alignment Framework for Multi-Label Land-cover Segmentation},
author={Wu, Guangming and Guo, Yimin and Song, Xiaoya and Guo, Zhiling and Zhang, Haoran and Shi, Xiaodan and Shibasaki, Ryosuke and Shao, Xiaowei},
journal={Remote Sensing},
volume={11},
number={9},
pages={1051},
year={2019},
publisher={Multidisciplinary Digital Publishing Institute}
}
- Source code
If you use the code for your research, please cite the paper.LINK
@article{wu2018geoseg,
title={Geoseg: A Computer Vision Package for Automatic Building Segmentation and Outline Extraction},
author={Wu, Guangming and Guo, Zhiling},
journal={arXiv preprint arXiv:1809.03175},
year={2018}
}