Awesome
TreeFormer: Single-view Plant Skeleton Estimation via Tree-constrained Graph Generation (WACV2025)
Xinpeng Liu<sup>1</sup>, Hiroaki Santo<sup>1</sup>, Yosuke Toda<sup>2,3</sup>, Fumio Okura<sup>1</sup><br> (<sup>1</sup> Osaka University, <sup>2</sup> Phytometrics, <sup>3</sup> Nagoya University)
Requirements
- CUDA>=9.2
- PyTorch>=1.7.1
For other system requirements please follow
pip install -r requirements.txt
Compiling CUDA operators
cd ./models/ops
python setup.py bulid install
Code Usage
1. Dataset preparation
Please download [Guyot dataset] by following the steps under Usage. The structure of the dataset should be as follows:
guyot_data/
└── train/
└── check/
└── images
└── data/
└── Set02_IMG_3468.pt
└── img/
└── images
└── unet/
└── images
└── test/
└── check/
└── images
└── data/
└── Set02_IMG_3468.pt
└── img/
└── images
└── unet/
└── images
└── val/
└── check/
└── images
└── data/
└── Set02_IMG_3468.pt
└── img/
└── images
└── unet/
└── images
2. Training
2.1 Prepare config file
The config file can be found at .configs/tree_2D_use_mst_only1.yaml
and .configs/tree_2D_use_unmst_only1.yaml
. Make custom changes if necessary.
2.2 Train
For example, the command for training Relationformer is following:
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/tree_2D_use_mst_only1.yaml --cuda_visible_device 0 1 2 3 4 5 6 7
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/tree_2D_use_mst_only1.yaml --cuda_visible_device 0 1 2 3 4 5 6 7 --resume trained_weights/check/checkpoint_81_epoch.pkl
3. Evaluation
Once you have the config file and trained model, run following command to evaluate it on test set:
python valid_smd_guyot_nx.py
4. Citation
@inproceedings{liu2025treeformer,
title={{TreeFormer}: Single-view Plant Skeleton Estimation via Tree-constrained Graph Generation},
author={Liu, Xinpeng and Santo, Hiroaki and Toda, Yosuke and Okura, Fumio},
booktitle={Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
year={2025}
}