Home

Awesome

Oriented RepPoints for Aerial Object Detection

图片

The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”.

Introduction

Based on the Oriented Reppoints detector with Swin Transformer backbone, the 3rd Place is achieved on the Task 1 and the 2nd Place is achieved on the Task 2 of 2021 challenge of Learning to Understand Aerial Images (LUAI) held on ICCV’2021. The detailed information is introduced in this paper of "LUAI Challenge 2021 on Learning to Understand Aerial Images, ICCVW2021".

New Feature

Installation

Please refer to install.md for installation and dataset preparation.

Getting Started

This repo is based on mmdetection. Please see GetStart.md for the basic usage.

Results and Models

The results on DOTA test-dev set are shown in the table below(password:aabb/swin/ABCD). More detailed results please see the paper.

ModelBackboneMS Train/TestDataAugDOTAv1 mAPDOTAv2 mAPDownload
OrientedReppointsR-50--75.68-baidu(aabb)
OrientedReppointsR-101-76.21-baidu(aabb)
OrientedReppointsR-10178.12-baidu(aabb)
OrientedReppointsSwinT-tiny--59.93baidu(aabb)

ImageNet-1K and ImageNet-22K Pretrained Models

namepretrainresolutionacc@1acc@5#paramsFLOPsFPS22K model1K modelNeed to turn read version
Swin-TImageNet-1K224x22481.295.528M4.5G755-github/baidu(swin)/config
Swin-SImageNet-1K224x22483.296.250M8.7G437-github/baidu(swin)/config
Swin-BImageNet-1K224x22483.596.588M15.4G278-github/baidu(swin)/config
Swin-BImageNet-1K384x38484.597.088M47.1G85-github/baidu(swin)/test-config
Swin-BImageNet-22K224x22485.297.588M15.4G278github/baidu(swin)github/baidu(swin)/test-config
Swin-BImageNet-22K384x38486.498.088M47.1G85github/baidu(swin)github/baidu(swin)/test-config
Swin-LImageNet-22K224x22486.397.9197M34.5G141github/baidu(swin)github/baidu(swin)/test-config
Swin-LImageNet-22K384x38487.398.2197M103.9G42github/baidu(swin)github/baidu(swin)/test-config
ReResNet50ImageNet-1K224x22471.2090.28----google/baidu(ABCD)/log-

The mAOE results on DOTAv1 val set are shown in the table below(password:aabb).

ModelBackbonemAOEDownload
OrientedReppointsR-505.93°baidu(aabb)

Note:

Visual results

The visual results of learning points and the oriented bounding boxes. The visualization code is show_learning_points_and_boxes.py.

Learning Points

Oriented Box

More details

DOTAv2遥感图像旋转目标检测竞赛经验分享(Swin Transformer + Anchor free/based方案)

Citation

@article{li2021oriented,
	title="Oriented RepPoints for Aerial Object Detection.",
	author="Wentong {Li}, Yijie {Chen}, Kaixuan {Hu}, Jianke {Zhu}.",
	journal="arXiv preprint arXiv:2105.11111",
	year="2021"
}

Acknowledgements

I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of:

OrientedRepPoints

Swin-Transformer-Object-Detection

ReDet