Awesome
PAIS
Code release for paper "Pseudo-label Alignment for Semi-supervised Instance Segmentation" [ICCV 2023]
Pseudo-label Alignment for Semi-supervised Instance Segmentation
Usage
Requirements
Ubuntu 16.04
Anaconda3
withpython=3.6
Pytorch=1.9.0
mmdetection=2.23.0
mmcv=1.3.17
Data Preparation
- Download the COCO dataset and cityscapes dataset
- Execute the following command to generate data set splits:
# YOUR_DATA should be a directory contains coco dataset.
# For eg.:
# YOUR_DATA/
# coco/
# train2017/
# val2017/
# unlabeled2017/
# annotations/
# cityscapes/
# leftImg8bit/
# gtFine/
# annotations/
Training
# JOB_TYPE: 'baseline' or 'semi', decide which kind of job to run
# PERCENT_LABELED_DATA: 1, 5, 10. The ratio of labeled coco data in whole training dataset.
# GPU_NUM: number of gpus to run the job
bash tools/dist_train_partially_weight.sh <JOB_TYPE> <PERCENT_LABELED_DATA> <GPU_NUM>
For example, we could run the following scripts to train our model on 10% labeled data with 4 GPUs:
bash tools/dist_train_partially_weight.sh semi 10 4
Evaluation
bash tools/dist_test.sh <CONFIG_FILE_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval bbox --cfg-options model.test_cfg.rcnn.score_thr=<THR>