Home

Awesome

pytorch

Wrappers to use torch and lua from python

What is pytorch?

Create torch tensors

import PyTorch
a = PyTorch.FloatTensor(2,3).uniform()
a += 3
print('a', a)
print('a.sum()', a.sum())

Instantiate nn network modules

import PyTorch
from PyTorchAug import nn

net = nn.Sequential()
net.add(nn.SpatialConvolutionMM(1, 16, 5, 5, 1, 1, 2, 2))
net.add(nn.ReLU())
net.add(nn.SpatialMaxPooling(3, 3, 3, 3))

net.add(nn.SpatialConvolutionMM(16, 32, 3, 3, 1, 1, 1, 1))
net.add(nn.ReLU())
net.add(nn.SpatialMaxPooling(2, 2, 2, 2))

net.add(nn.Reshape(32 * 4 * 4))
net.add(nn.Linear(32 * 4 * 4, 150))
net.add(nn.Tanh())
net.add(nn.Linear(150, 10))
net.add(nn.LogSoftMax())
net.float()

crit = nn.ClassNLLCriterion()
crit.float()

net.zeroGradParameters()
input = PyTorch.FloatTensor(5, 1, 28, 28).uniform()
labels = PyTorch.ByteTensor(5).geometric(0.9).icmin(10)
output = net.forward(input)
loss = crit.forward(output, labels)
gradOutput = crit.backward(output, labels)
gradInput = net.backward(input, gradOutput)
net.updateParameters(0.02)

Write your own lua class, call methods on it

Example lua class:

require 'torch'
require 'nn'

local TorchModel = torch.class('TorchModel')

function TorchModel:__init(backend, imageSize, numClasses)
  self:buildModel(backend, imageSize, numClasses)
  self.imageSize = imageSize
  self.numClasses = numClasses
  self.backend = backend
end

function TorchModel:buildModel(backend, imageSize, numClasses)
  self.net = nn.Sequential()
  local net = self.net

  net:add(nn.SpatialConvolutionMM(1, 16, 5, 5, 1, 1, 2, 2))
  net:add(nn.ReLU())
  net:add(nn.SpatialMaxPooling(3, 3, 3, 3))
  net:add(nn.SpatialConvolutionMM(16, 32, 3, 3, 1, 1, 1, 1))
  net:add(nn.ReLU())
  net:add(nn.SpatialMaxPooling(2, 2, 2, 2))
  net:add(nn.Reshape(32 * 4 * 4))
  net:add(nn.Linear(32 * 4 * 4, 150))
  net:add(nn.Tanh())
  net:add(nn.Linear(150, numClasses))
  net:add(nn.LogSoftMax())

  self.crit = nn.ClassNLLCriterion()

  self.net:float()
  self.crit:float()
end

function TorchModel:trainBatch(learningRate, input, labels)
  self.net:zeroGradParameters()

  local output = self.net:forward(input)
  local loss = self.crit:forward(output, labels)
  local gradOutput = self.crit:backward(output, labels)
  self.net:backward(input, gradOutput)
  self.net:updateParameters(learningRate)

  local _, prediction = output:max(2)
  local numRight = labels:int():eq(prediction:int()):sum()
  return {loss=loss, numRight=numRight}  -- you can return a table, it will become a python dictionary
end

function TorchModel:predict(input)
  local output = self.net:forward(input)
  local _, prediction = output:max(2)
  return prediction:byte()
end

Python script that calls this. Assume the lua class is stored in file "torch_model.lua"

import PyTorch
import PyTorchHelpers
import numpy as np
from mnist import MNIST

batchSize = 32
numEpochs = 2
learningRate = 0.02

TorchModel = PyTorchHelpers.load_lua_class('torch_model.lua', 'TorchModel')
torchModel = TorchModel(backend, 28, 10)

mndata = MNIST('../../data/mnist')
imagesList, labelsList = mndata.load_training()
labels = np.array(labelsList, dtype=np.uint8)
images = np.array(imagesList, dtype=np.float32)
labels += 1  # since torch/lua labels are 1-based
N = labels.shape[0]

numBatches = N // batchSize
for epoch in range(numEpochs):
  epochLoss = 0
  epochNumRight = 0
  for b in range(numBatches):
    res = torchModel.trainBatch(
      learningRate,
      images[b * batchSize:(b+1) * batchSize],
      labels[b * batchSize:(b+1) * batchSize])
    numRight = res['numRight']
    epochNumRight += numRight
  print('epoch ' + str(epoch) + ' accuracy: ' + str(epochNumRight * 100.0 / N) + '%')

It's easy to modify the lua script to use CUDA, or OpenCL.

Installation

Pre-requisites

luarocks install nn
pip install -r requirements.txt
pip install -r test/requirements.txt

Procedure

Run:

git clone https://github.com/hughperkins/pytorch.git
cd pytorch
source ~/torch/install/bin/torch-activate
./build.sh

Unit-tests

Run:

source ~/torch/install/bin/torch-activate
cd pytorch
./run_tests.sh

Python 2 vs Python 3?

Maintainer guidelines

Maintainer guidelines

Versioning

semantic versioning

Related projects

Examples of training models/networks using pytorch:

Addons, for using cuda tensors and opencl tensors directly from python (no need for this to train networks. could be useful if you want to manipulate cuda tensor directly from python)

Support?

Please note that currently, right now, I'm focused 100.000% on cuda-on-cl, so please be patient during this period

Recent news

12 September:

8 September:

26 August:

14 April:

17 March:

16 March:

6 March:

5 March:

2 March:

28th Februrary:

26th February:

24th February:

Older changes