Home

Awesome

<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->

Table of Contents generated with DocToc

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

EasyCL

Easy to run kernels using OpenCL. (renamed from OpenCLHelper)

Example Usage

Imagine we have a kernel with the following signature, in the file /tmp/foo.cl:

kernel void my_kernel( int N, global float *one, global float *two, local float *one_local, global float *result ) {
    // kernel code here...
}

... then we can call it like:

#include "EasyCL.h"

if( !EasyCL::isOpenCLAvailable() ) {
    cout << "opencl library not found" << endl;
    exit(-1);
}
EasyCL *cl = EasyCL::createForFirstGpu();
CLKernel *kernel = cl->buildKernel("somekernelfile.cl", "test_function");
int in[5];
int out[5];
for( int i = 0; i < 5; i++ ) {
    in[i] = i * 3;
}
kernel->in( 5, in );
kernel->out( 5, out );
kernel->run_1d( 5, 5 ); // global workgroup size = 5, local workgroup size = 5
delete kernel;
// use the results in 'out' array here

More generally, you can call on 2d and 3d workgroups by using the kernel->run method:

const size_t local_ws[1]; local_ws[0] = 512;
const size_t global_ws[1]; global_ws[0] = EasyCL::roundUp(local_ws[0], size);
kernel->run( 1, global_ws, local_ws ); // 1 is number of dimensions, could be 2, or 3

'Fluent' style is also possible, eg:

kernel->in(10)->in(5)->out( 5, outarray )->run_1d( 5, 5 );

If you use EasyCL::createForFirstGpu(), EasyCL will bind to the first OpenCL-enabled GPU (or accelerator), that it finds. If you want to use a different device, or an OpenCL-enabled CPU, you can use one of the following method:

EasyCL::createForIndexedGpu( int gpuindex ); // looks for opencl-enabled gpus, and binds to the (gpuindex+1)th one
EasyCL::createForFirstGpuOtherwiseCpu();
EasyCL::createForPlatformDeviceIndexes( int platformIndex, int deviceIndex );
EasyCL::createForPlatformDeviceIds( int platformId, int deviceId ); // you can get these ids by running `gpuinfo` first

You can run gpuinfo to get a list of platforms and devices on your system.

There are some examples in the test subdirectory.

Environment Vars

You can use the environment variable CL_GPUOFFSET to choose a GPU. It shifts the gpu numbering downwards by this offset, ie gpu index 1 becomes 0, index 2 becomes 1. For example, if a program uses gpu index 0 by default, setting CL_GPUOFFSET to 1 will choose the second gpu, and setting it to 2 will choose the third gpu.

Examples

There are some examples in the test subdirectory.

API

// constructor:
EasyCL::EasyCL();
// choose different gpu index
void EasyCL::gpu( int gpuindex );

// compile kernel
CLKernel *EasyCL::buildKernel( string kernelfilepath, string kernelname, string options = "" );

// Note that you pass `#define`s in through the `options` parameters, like `-D TANH`, or `-D TANH -D BIASED`

// passing arguments to kernel:

CLKernel::in( int integerinput );

CLKernel::in( int arraysize, const float *inputarray ); // size in number of floats
CLKernel::in( int arraysize, const int *inputarray ); // size in number of ints
CLKernel::out( int arraysize, float *outputarray ); // size in number of floats
CLKernel::out( int arraysize, int *outputarray ); // size in number of ints
CLKernel::inout( int arraysize, float *inoutarray ); // size in number of floats
CLKernel::inout( int arraysize, int *inoutarray ); // size in number of ints

// to allocate local arrays, as passed-in kernel parameters:
CLKernel::localFloats( int localarraysize ); // size in number of floats
CLKernel::localInts( int localarraysize ); // size in number of ints

// running kernel, getting result back, and cleaning up:
CLKernel::run_1d( int global_ws, int local_ws );
CLKernel::run( int number_dimensions, size_t *global_ws, size_t *local_ws );

// helper function:
EasyCL::roundUp( int quantizationSize, int desiredTotalSize );

CLArray and CLWrapper objects

To make it possible to reuse data between kernels, without moving back to PC main memory, and back onto the GPU, you can use CLWrapper objects.

These can be created on the GPU, or on the host, and moved backwards and forwards between each other, as required. They can be passed as an 'input' and 'output' to a CLKernel object. They can be reused between kernels.

There are two 'flavors':

CLArray objects are the first implementation. CLWrapper objects are the second implementation. You can use either, but note that CLWrapper objects are the ones that I use myself.

CLWrapper objects

Compared to CLArray objects, CLWrapper objects need less memory copying, since they wrap an existing native array, but you will need to call copyToDevice() and copyToHost() yourself.

if( !EasyCL::isOpenCLAvailable() ) {
    cout << "opencl library not found" << endl;
    exit(-1);
}
cout << "found opencl library" << endl;

EasyCL cl;
CLKernel *kernel = cl.buildKernel("../test/testeasycl.cl", "test_int");
int in[5];
for( int i = 0; i < 5; i++ ) {
    in[i] = i * 3;
}
int out[5];
CLWrapper *inwrapper = cl.wrap(5, in);
CLWrapper *outwrapper = cl.wrap(5, out);
inwrapper->copyToDevice();
kernel->in( inwrapper );
kernel->out( outwrapper );
kernel->run_1d( 5, 5 );
outwrapper->copyToHost();
assertEquals( out[0] , 7 );
assertEquals( out[1] , 10 );
assertEquals( out[2] , 13 );
assertEquals( out[3] , 16 );
assertEquals( out[4] , 19 );
cout << "tests completed ok" << endl;

Can copy between buffers (New!):

wrapper1->copyTo( wrapper2 );

CLWrapper objects are currently available as CLIntWrapper and CLFloatWrapper.

CLArray objects

Compared to CLWrapper objects, CLArray objects are more automated, but involve more memory copying.

EasyCL cl;

CLArrayFloat *one = cl.arrayFloat(10000); // create CLArray object for 10,000 floats
(*one)[0] = 5; // give some data...
(*one)[1] = 7;

CLArrayFloat *two = cl.arrayFloat(10000);

// pass to kernel:
kernel->in(one)->out(two);

You can then take the 'two' CLArray object, and pass it as the 'input' to a different kernel, or you can use operator[] to read values from it.

Currently, CLArray is available as 'CLArrayFloat' and 'CLArrayInt'.

Kernel store

You can store kernels in the store, under a unique name each, to facilitate kernel caching

// store:
cl->storeKernel( "mykernelname", somekernel ); // name must be not used yet

// check exists:
cl->kernelExists( "mykernelname" );

// retrieve:
CLKernel *kernel = cl->getKernel( "mykernelname" );

New: you can transfer kernel ownership to EasyCL object, by passing third parameter deleteWithCl = true. Then, when the EasyCL object is deleted, so will be the kernel.

// store:
cl->storeKernel( "mykernelname", somekernel, true ); // this kernel will be deleted when
                                                     // `cl` object is deleted

device dirty flag

For CLWrapper objects, if the wrapper is passed to a kernel via out or inout, and then that kernel is run, then isDeviceDirty() will return true, until ->copyToHost() is called. So, you can use this to determine whether you need to run ->copyToHost() prior to reading the host-side array.

The following methods will reset the flag to false:

This is a new feature, as of May 15 2015, and might have some bugs prior to May 31 2015 (ie, about 2 weeks, long enough for me to find any bugs).

templated kernels

passing structs

Profiling (New!)

Using with clBLAS

How to build

Build options

OptionDescription
`PROVIDE_LUA_ENGINEIf you want to call EasyCL from within Lua, then choose option PROVIDE_LUA_ENGINE=OFF, otherwise leave it as ON
DEV_RUN_COGOnly for EasyCL maintainers, leave as OFF otherwise
BUILD_TESTSwhether to build unit tests

Build Status

Building on Mac OS X

(tested on Travis https://travis-ci.org/hughperkins/EasyCL )

Pre-requisites

Procedure

git clone --recursive https://github.com/hughperkins/EasyCL.git
cd EasyCL
mkdir build
cd build
cmake ..
make install

Building on linux

Pre-requisites

Procedure

git clone --recursive https://github.com/hughperkins/EasyCL.git
cd EasyCL
mkdir build
cd build
cmake ..
make install

Building on Windows

Pre-requisites

Procedure

How to run self-tests

To check clew library is working ok (ie finding and loading the opencl library, etc):

linux:

    LD_LIBRARY_PATH=../dist/lib ..dist/bin/gpuinfo

Windows:

    ..dist/bin/gpuinfo

... should print some information about your graphics card

Unit-tests:

Linux:

    LD_LIBRARY_PATH=../dist/lib ..dist/bin/easycl_unittests

Windows:

    ..dist/bin/easycl_unittests

How to check my OpenCL installation/configuration?

What if I've found a bug?

What if I want a new feature?

What if I just have a question?

Recent changes

License

EasyCL is available under MPL v2 license, http://mozilla.org/MPL/2.0/19