Home

Awesome

Super-Resolution.Benckmark

A curated list of super-resolution resources and a benchmark for single image super-resolution algorithms.

See my implementated super-resolution algorithms:

TODO

Build a benckmark like SelfExSR_Code

State-of-the-art algorithms

Classical Sparse Coding Method

Anchored Neighborhood Regression Method

Self-Exemplars

Bayes

Deep Learning Method

Perceptual Loss and GAN

Video SR

Dicussion

Deconvolution and Sub-Pixel Convolution

Datasets

Test DatasetImage source
Set 5Bevilacqua et al. BMVC 2012
Set 14Zeyde et al. LNCS 2010
BSD 100Martin et al. ICCV 2001
Urban 100Huang et al. CVPR 2015
Train DatasetImage source
Yang 91Yang et al. CVPR 2008
BSD 200Martin et al. ICCV 2001
General 100Dong et al. ECCV 2016
ImageNetOlga Russakovsky et al. IJCV 2015
COCOTsung-Yi Lin et al. ECCV 2014

Quantitative comparisons

Results from papers of VDSR, DRCN, CSCN and IA.

Note: IA use enchanced prediction trick to improve result.

Results on Set 5
ScaleBicubicA+SRCNNSelfExSRCSCNVDSRDRCNIA
2x - PSNR/SSIM33.66/0.992936.54/0.954436.66/0.954236.49/0.953736.93/0.955237.53/0.958737.63/0.958837.39/
3x - PSNR/SSIM30.39/0.868232.59/0.908832.75/0.909032.58/0.909333.10/0.914433.66/0.921333.82/0.922633.46/
4x - PSNR/SSIM28.42/0.810430.28/0.860330.48/0.862830.31/0.861930.86/0.873231.35/0.883831.53/0.885431.10/
Results on Set 14
ScaleBicubicA+SRCNNSelfExSRCSCNVDSRDRCNIA
2x - PSNR/SSIM30.24/0.868832.28/0.905632.42/0.906332.22/0.903432.56/0.907433.03/0.912433.04/0.911832.87/
3x - PSNR/SSIM27.55/0.774229.13/0.818829.28/0.820929.16/0.819629.41/0.823829.77/0.831429.76/0.831129.69/
4x - PSNR/SSIM26.00/0.702727.32/0.749127.49/0.750327.40/0.751827.64/0.758728.01/0.767428.02/0.767027.88/
Results on BSD 100
ScaleBicubicA+SRCNNSelfExSRCSCNVDSRDRCNIA
2x - PSNR/SSIM29.56/0.843131.21/0.886331.36/0.887931.18/0.885531.40/0.888431.90/0.896031.85/0.894231.79/
3x - PSNR/SSIM27.21/0.738528.29/0.783528.41/0.786328.29/0.784028.50/0.788528.82/0.797628.80/0.796328.76/
4x - PSNR/SSIM25.96/0.667526.82/0.708726.90/0.710126.84/0.710627.03/0.716127.29/0.725127.23/0.723327.25/