Awesome
SUDS: Scalable Urban Dynamic Scenes
Haithem Turki, Jason Y. Zhang, Francesco Ferroni, Deva Ramanan
This repository contains the code needed to train SUDS models.
Citation
@misc{turki2023suds,
title={SUDS: Scalable Urban Dynamic Scenes},
author={Haithem Turki and Jason Y. Zhang and Francesco Ferroni and Deva Ramanan},
year={2023},
eprint={2303.14536},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Setup
conda env create -f environment.yml
conda activate suds
python setup.py install
The codebase has been mainly tested against CUDA >= 11.3 and A100/A6000 GPUs. GPUs with compute capability greater or equal to 7.5 should generally work, although you may need to adjust batch sizes to fit within GPU memory constraints.
Data Preparation
KITTI
-
Download the following from the KITTI MOT dataset:
-
Extract everything to
./data/kitti
and keep the data structure -
Generate depth maps from the Velodyne point clouds:
python scripts/create_kitti_depth_maps.py --kitti_sequence $SEQUENCE
-
(Optional) Generate sky and static masks from semantic labels:
python scripts/create_kitti_masks.py --kitti_sequence $SEQUENCE
-
Create metadata file:
python scripts/create_kitti_metadata.py --config_file scripts/configs/$CONFIG_FILE
-
Extract DINO features:
python scripts/extract_dino_features.py --metadata_path $METADATA_PATH
orpython -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS scripts/extract_dino_features.py --metadata_path $METADATA_PATH
for multi-GPU extractionpython scripts/run_pca.py --metadata_path $METADATA_PATH
-
Extract DINO correspondences:
python scripts/extract_dino_correspondences.py --metadata_path $METADATA_PATH
orpython -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS scripts/extract_dino_correspondences.py --metadata_path $METADATA_PATH
for multi-GPU extraction -
(Optional) Generate feature clusters for visualization:
python scripts/create_kitti_feature_clusters.py --metadata_path $METADATA_PATH --output_path $OUTPUT_PATH
VKITTI2
-
Download the following from the VKITTI2 dataset:
- RGB images
- Depth images
- Camera intrinsics/extrinsics
- (Optional) Ground truth forward flow
- (Optional) Ground truth backward flow
- (Optional) Semantic labels
-
Extract everything to
./data/vkitti2
and keep the data structure -
(Optional) Generate sky and static masks from semantic labels:
python scripts/create_vkitti2_masks.py --vkitti2_path $SCENE_PATH
-
Create metadata file:
python scripts/create_vkitti2_metadata.py --config_file scripts/configs/$CONFIG_FILE
-
Extract DINO features:
python scripts/extract_dino_features.py --metadata_path $METADATA_PATH
orpython -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS scripts/extract_dino_features.py --metadata_path $METADATA_PATH
for multi-GPU extractionpython scripts/run_pca.py --metadata_path $METADATA_PATH
-
If not using the ground truth flow provided by VKITTI2, extract DINO correspondences:
python scripts/extract_dino_correspondences.py --metadata_path $METADATA_PATH
orpython -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS scripts/extract_dino_correspondences.py --metadata_path $METADATA_PATH
for multi-GPU extraction -
(Optional) Generate feature clusters for visualization:
python scripts/create_vkitti2_feature_clusters.py --metadata_path $METADATA_PATH --vkitti2_path $SCENE_PATH --output_path $OUTPUT_PATH
Training
python suds/train.py suds --experiment-name $EXPERIMENT_NAME --pipeline.datamanager.dataparser.metadata_path $METADATA_PATH [--pipeline.feature_clusters $FEATURE_CLUSTERS]
Evaluation
python suds/eval.py --load_config $SAVED_MODEL_PATH
or python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS suds/eval.py --load_config $SAVED_MODEL_PATH
for multi-GPU evaluation
Acknowledgements
This project is built on Nerfstudio and tiny-cuda-nn. The DINO feature extraction scripts are based on ShirAmir's implementation and parts of the KITTI processing code from Neural Scene Graphs.