Home

Awesome

Loss-Aware-Binarization

Implementation of ICLR 2017 paper "Loss aware Binarization of Deep Networks", tested with GTX TITAN X, python 2.7, theano 0.9.0 and lasagne 0.2.dev1.

This repository is divided in two subrepositories:

Requirements This software is implemented on top of the implementation of BinaryConnect and has all the same requirements.

Example training command on War and Peace dataset:

python warpeace.py --method="LAB" --lr_start=0.002 --w="w" --len=100
python warpeace.py --method="LAB" --lr_start=0.002 --w="wa" --len=100

If you find loss-aware weight quantization useful in your research, please consider citing the the paper


@InProceedings{hou2017loss,
	title={Loss-aware Binarization of Deep Networks},
	author={Hou, Lu and Yao, Quanming and Kwok, James T.},
	booktitle={International Conference on Learning Representations},
	year={2017}
}

@InProceedings{hou2018loss,
	title={Loss-aware Weight Quantization of Deep Networks},
	author={Hou, Lu and Kwok, James T.},
	booktitle={International Conference on Learning Representations},
	year={2018}
}

@InProceedings{hou2019analysis,
	title={Analysis of Quantized Models},
	author={Hou, Lu and Zhang, Ruiliang and Kwok, James T.},
	booktitle={International Conference on Learning Representations},
	year={2019}
}