Home

Awesome

Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching

<div align="center"> <img src="assets/teaser.png" width="100%" ></img> <br> <em> (Results on DiT-XL/2 and U-ViT-H/2) </em> </div> <br>

Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching 🥯[Arxiv]
Xinyin Ma, Gongfan Fang, Michael Bi Mi, Xinchao Wang
Learning and Vision Lab, National University of Singapore, Huawei Technologies Ltd

Introduction

We introduce a novel scheme, named Learning-to-Cache (L2C), that learns to conduct caching in a dynamic manner for diffusion transformers. A router is optimized to decide the layers to be cached.

<div align="center"> <img src="U-ViT/u-vit.gif" width="40%" ></img> <br> <em> (Changes in the router for U-ViT when optimizing across different layers (x-axis) over all steps (y-axis). The white indicates the layer is activated, while the black indicates it is disabled.) </em> </div>

Some takeaways:

  1. A large proportion of layers in the diffusion transformer can be removed, without updating the model parameters.

    • In U-ViT-H/2, up to 93.68% of the layers in the cache steps (46.84% for all steps) can be removed, with less than 0.01 drop in FID.
  2. L2C largely outperforms samplers such as DDIM and DPM-Solver.

<div align="center"> <img src="assets/dit_baseline.png" width="40%" ></img> <img src="assets/uvit_baseline.png" width="40%" ></img> <br> <em> (Comparison with Baselines. Left: DiT-XL/2. Right: U-ViT-H/2) </em> </div>

Checkpoint for Routers

ModelNFECheckpoint
DiT-XL/250link
DiT-XL/220link
U-ViT-H/250link
U-ViT-H/220link

Code

We implement Learning-to-Cache on two basic structures: DiT and U-ViT. Check the instructions below:

  1. DiT: README
  2. U-ViT: README

Citation

@misc{ma2024learningtocache,
      title={Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching}, 
      author={Xinyin Ma and Gongfan Fang and Michael Bi Mi and Xinchao Wang},
      year={2024},
      eprint={2406.01733},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}