Home

Awesome

Holistic 3D Reconstruction

A list of papers and resources for holistic 3D reconstruction.

Related Tutorials and Workshops

Datasets

Scene level

Datasets#Scenes#Rooms#FramesAnnotated Structures
PlaneRCNN~1,500~1,500100,000 (randomly sampled from 1 million)planes
Replica18n/a-planes
Wireframe--5,462wireframe (2D)
Wireframe Reconstructionsynthetic and real images--wireframe (3D)
SUN Primitive--785cuboid, pyramid, cylinder, sphere, etc.
LSUN Room Layout-n/a5,394cuboid layout
PanoContext-n/a500 (pano)cuboid layout
LayoutNet-n/a1,071 (pano)cuboid layout
MatterportLayout-n/a2,295 (RGB-D pano)Manhattan layout
Floor-SP100707~1500 (every scene has a set of RGB-D pano)floorplan (with non-Manhattan structures)
FloorNet~150~1000-floorplan
Raster-to-Vector870--floorplan
3RScan478--objects
Structured3D3,50021,835196,515pritimitves (points/lines/planes) and relationships, 3D object instance bounding boxes

Object level

Datasets#Images#Categories#3D modelsAnnotated StructuresNotes
Keypoint-58,6495-keypoints
IKEA Keypoints759219keypointsderived from IKEA 3D
ANSI Mechanical Component-50417,197plane, sphere, cylinder, cone, etc.
PartNet-2426,671fine-grained, instance-level, and hierarchical 3D partsderived from ShapeNet
PartNet-Symh-2422,369Symmetry hierarchical 3D partsderived from PartNet
StructureNet-6-Symmetry hierarchical 3D partsderived from PartNet

Datasets examples

PlaneRCNN

<div align="center"> <img src=figures/PlaneRCNN.jpg> </div> <div align="center">From left to right: input RGB image, planar segmentation, depthmap</div>

Wireframe

<div align="center"> <img src=figures/Wireframe.jpg> </div> <div align="center">First row: manually labelled line segments. Second row: groundtruth junctions</div>

Wireframe Reconstruction

<div align="center"> <img src=figures/Wireframe_reconstruction.jpg> </div> <div align="center">From left column to right column: input image with groundtruth wireframes, predicted 3D wireframe and alternative view of the same image</div>

SUN Primitive

<div align="center"> <img src=figures/SUN_Primitive.jpg> </div> <div align="center">Yellow: groundtruth, green: correct detection, red: false alarm</div>

LSUN Room Layout

<div align="center"> <img src=figures/LSUN_room.png> </div> <div align="center">From left right: input RGB image, room layout (corner-representation), room layout (segmentation-representation)</div>

PanoContext

<div align="center"> <img src=figures/PanoContext.jpg> </div> <div align="center">From left to right: a single-view panorama, object detection and 3D reconstruction</div>

LayoutNet

<div align="center"> <img src=figures/LayoutNet.jpg> </div> <div align="center">Orange lines: predicted layout, Green lines: groundtruth layout</div>

Raster-to-Vector

<div align="center"> <img src=figures/Raster_to_vector.jpg> </div> <div align="center">From left to right: an input floorplan image, reconstructed vector-graphics representation visualized by custom renderer, and a popup 3D model</div>

Floor-SP

<div align="center"> <img src=figures/Floor-SP.png> </div> <div align="center">From left to right: stitched RGB-D panorama of indoor scenes & top-view point density/normal map, vector-graphics floorplan with non-Manhattan structures</div>

Structured3D

<div align="center"> <img src=figures/Structured3D.jpg> </div> <div align="center">(a) house designs (b) ground truth 3D structure annotations (c) photo-realistic 2D images</div>

Keypoint-5 and IKEA Keypoints

<div align="center"> <img src=figures/Keypoints_5_input.jpeg> <img src=figures/Keypoints_5_label.jpeg> </div> <div align="center">Left: input image, right: labeled 2D keypoints</div>

ANSI Mechanical Component

<div align="center"> <img src=figures/ANSI.jpg> </div> <div align="center">Up to down: input point cloud and geometric primitives</div>

PartNet

<div align="center"> <img src=figures/PartNet.jpg> </div> <div align="center">From left column to right column:Three levels(from coarse to fine-grained) of segmentation annotations in the hierarchy,for three segmentation tasks</div>

PartNet-Symh

<div align="center"> <img src=figures/PartNet_Symh.jpg> </div> <div align="center">Odd rows: groundtruth fine-grained segmentation results, even rows: prediction fine-grained segmentation results</div>

References

Books

Papers - Scene level

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010 and before

Papers - Object level

2020

2019

2018

2017

2013

2012

2011

2010 and before