Awesome
lupin is a Python JSON object mapper
lupin is meant to help in serializing python objects to JSON and unserializing JSON data to python objects.
Installation
pip install lupin
Usage
lupin uses schemas to create a representation of a python object.
A schema is composed of fields which represents the way to load and dump an attribute of an object.
Define schemas
from datetime import datetime
from lupin import Mapper, Schema, fields as f
# 1) Define your models
class Thief(object):
def __init__(self, name, stolen_items):
self.name = name
self.stolen_items = stolen_items
class Painting(object):
def __init__(self, name, author):
self.name = name
self.author = author
class Artist(object):
def __init__(self, name, birth_date):
self.name = name
self.birth_date = birth_date
# 2) Create schemas
artist_schema = Schema({
"name": f.String(),
"birthDate": f.DateTime(binding="birth_date", format="%Y-%m-%d")
}, name="artist")
painting_schema = Schema({
"name": f.String(),
"author": f.Object(artist_schema)
}, name="painting")
thief_schema = Schema({
"name": f.String(),
"stolenItems": f.List(painting_schema, binding="stolen_items")
}, name="thief")
# 3) Create a mapper and register a schema for each of your models you want to map to JSON objects
mapper = Mapper()
mapper.register(Artist, artist_schema)
mapper.register(Painting, painting_schema)
mapper.register(Thief, thief_schema)
# 4) Create some sample data
leonardo = Artist(name="Leonardo da Vinci", birth_date=datetime(1452, 4, 15))
mona_lisa = Painting(name="Mona Lisa", author=leonardo)
arsene = Thief(name="Arsène Lupin", stolen_items=[mona_lisa])
Dump objects
# use mapper to dump python objects
assert mapper.dump(leonardo) == {
"name": "Leonardo da Vinci",
"birthDate": "1452-04-15"
}
assert mapper.dump(mona_lisa) == {
"name": "Mona Lisa",
"author": {
"name": "Leonardo da Vinci",
"birthDate": "1452-04-15"
}
}
assert mapper.dump(arsene) == {
"name": "Arsène Lupin",
"stolenItems": [
{
"name": "Mona Lisa",
"author": {
"name": "Leonardo da Vinci",
"birthDate": "1452-04-15"
}
}
]
}
Load objects
# use mapper to load JSON data
data = {
"name": "Mona Lisa",
"author": {
"name": "Leonardo da Vinci",
"birthDate": "1452-04-15"
}
}
painting = mapper.load(data, "painting") # "painting" is the name of the schame you want to use
artist = painting.author
assert isinstance(painting, Painting)
assert painting.name == "Mona Lisa"
assert isinstance(artist, Artist)
assert artist.name == "Leonardo da Vinci"
assert artist.birth_date == datetime(1452, 4, 15)
Polymorphic lists
Sometimes a list can contain multiple type of objects. In such cases you will have to use a PolymorphicList
, you will also need to add
a key in the items schema to store the type of the object (you can use a Constant
field).
Say that our thief has level up and has stolen a diamond.
class Diamond(object):
def __init__(self, carat):
self.carat = carat
mapper = Mapper()
# Register a schema for diamonds
diamond_schema = Schema({
"carat": f.Field(),
"type": f.Constant("diamond") # this will be used to know which schema to used while loading JSON
}, name="diamond")
mapper.register(Diamond, diamond_schema)
# Change our painting schema in order to include a `type` field
painting_schema = Schema({
"name": f.String(),
"type": f.Constant("painting"),
"author": f.Object(artist_schema)
}, name="painting")
mapper.register(Painting, painting_schema)
# Use `PolymorphicList` for `stolen_items`
thief_schema = Schema({
"name": f.String(),
"stolenItems": f.PolymorphicList(on="type", # JSON key to lookup for the polymorphic type
binding="stolen_items",
schemas={
"painting": painting_schema, # if `type == "painting"` then use painting_schema
"diamond": diamond_schema # if `type == "diamond"` then use diamond_schema
})
}, name="thief")
mapper.register(Thief, thief_schema)
diamond = Diamond(carat=20)
arsene.stolen_items.append(diamond)
# Dump object
data = mapper.dump(arsene)
assert data == {
"name": "Arsène Lupin",
"stolenItems": [
{
"name": "Mona Lisa",
"type": "painting",
"author": {
"name": "Leonardo da Vinci",
"birthDate": "1452-04-15"
}
},
{
"carat": 20,
"type": "diamond"
}
]
}
# Load data
thief = mapper.load(data, "thief")
assert isinstance(thief.stolen_items[0], Painting)
assert isinstance(thief.stolen_items[1], Diamond)
Validation
Lupin provides a set of builtin validators, you can find them in the lupin/validators folder.
While creating your schemas you can assign validators to the fields. Before loading a document lupin will validate
its format. If one field is invalid, an InvalidDocument
is raised with all the error detected in the data.
Example :
from lupin import Mapper, Schema, fields as f, validators as v
from lupin.errors import InvalidDocument, InvalidLength
from models import Artist
mapper = Mapper()
artist_schema = Schema({
"name": f.String(validators=v.Length(max=10)),
}, name="artist")
mapper.register(Artist, artist_schema)
data = {
"name": "Leonardo da Vinci"
}
try:
mapper.load(data, artist_schema, allow_partial=True)
except InvalidDocument as errors:
error = errors[0]
assert isinstance(error, InvalidLength)
assert error.path == ["name"]
Current validators are :
DateTimeFormat
(validate that value is a valid datetime format)Equal
(validate that value is equal to a predefined one)In
(validate that a value is contained in a set of value)Length
(validate the length of a value)Match
(validate the format of a value with a regex)Type
(validate the type of a value, this validator is already included in all fields to match the field type)URL
(validate an URL string format)IsNone
(validate that value is None)Between
(validate that value belongs to a range)
Combination
You can build validators combinations using the &
and |
operator.
Example :
from lupin import validators as v
from lupin.errors import ValidationError
validators = v.Equal("Lupin") | v.Equal("Andrésy")
# validators passes only if value is "Lupin" or "Andrésy"
validators("Lupin", [])
try:
validators("Holmes", [])
except ValidationError:
print("Validation error")