Awesome
This repository is abandoned due to the overwhelming complexity of metaprogramming with Boost/Preprocessor. See Metalang99 and Datatype99 -- the successors.
poica
The goal of this project is to implement the features of modern programming languages in plain C11 via its macro system, thereby improving static reasoning and achieving a better way to organise our code.
Table of contents
- Installation
- Algebraic data types
- Type introspection
- Safe, consistent error handling
- Built-in ADTs
- OOP
- Type-generic programming
- Options
- FAQ
Installation
The recommended way is using Git submodules. Enter your project and execute:
git submodule add -b master https://github.com/hirrolot/poica
git submodule update --init --recursive
If you use CMake, you can then connect poica as follows:
include_directories(poica/include poica/preprocessor/include poica/vmd/include)
And #include <poica.h>
inside your source files to export its public API. Building isn't required, because poica is a header-only library.
If you use GCC, -ftrack-macro-expansion=0
would reduce compilation time and memory consumption.
Algebraic data types
Usually in C we use unions to tell a compiler that we're going to interpret a single memory region in different ways. To decide how to interpret a union, we endow it with a tag and get a tagged union.
However, there'll be quite lot of duplication in code:
typedef struct {
enum {
OUR_TAGGED_UNION_STATE_1,
OUR_TAGGED_UNION_STATE_2,
OUR_TAGGED_UNION_STATE_3,
} state;
union {
int state_1;
const char *state_2;
double state_3;
} data;
} OurTaggedUnion;
What's even worse is that this approach is unsafe, meaning that we can construct invalid OurTaggedUnion
(i), or, for example, (ii) access data.state_1
when the actual state is OUR_TAGGED_UNION_STATE_3
:
// (i)
OurTaggedUnion res1 = { .state = OUR_TAGGED_UNION_STATE_2, .data.state_1 = 123 };
// (ii)
OurTaggedUnion res2 = { .state = OUR_TAGGED_UNION_STATE_3, .data.state_3 = .99 };
some_procedure(res2.data.state_1);
poica solves these two problems by introducing [algebraic data types] (discussed in the next section). That's how it's accomplished with poica:
choice(
OurTaggedUnion,
variant(State1, int)
variant(State2, const char *)
variant(State3, double)
);
// (i) Compilation failed!
OurTaggedUnion res1 = State2(123);
OurTaggedUnion res2 = State3(.99);
some_procedure(/* Impossible to pass state_1! */);
Sum types
For example, a binary tree like this:
<div align="center"> <img src="images/BINARY_TREE.png" width="380px" /> </div>Can be conveniently represented as a sum type and further manipulated using pattern matching. In the code below we first construct this binary tree, and then print all its elements to stdout
:
#include <poica.h>
#include <stdio.h>
choice(
Tree,
variant(Empty)
variant(Leaf, int)
variantMany(Node,
field(left, struct Tree *)
field(number, int)
field(right, struct Tree *)
)
);
void print_tree(const Tree *tree) {
match(*tree) {
of(Empty) {
return;
}
of(Leaf, number) {
printf("%d\n", *number);
}
ofMany(Node, (left, number, right)) {
print_tree(*left);
printf("%d\n", *number);
print_tree(*right);
}
}
}
#define TREE(tree) obj(tree, Tree)
#define NODE(left, number, right) TREE(Node(left, number, right))
#define LEAF(number) TREE(Leaf(number))
int main(void) {
const Tree *tree = NODE(NODE(LEAF(81), 456, NODE(LEAF(90), 7, LEAF(111))), 57, LEAF(123));
print_tree(tree);
}
<details>
<summary>Output</summary>
81
456
90
7
111
57
123
</details>
Product types
If we have structures in C, why do we need product types? Well, because product types provide type introspection (discussed in the next section). A product type is represented like this:
record(
UserAccount,
field(name, const char *)
field(balance, double)
field(age, unsigned char)
);
And it can be further manipulated like an ordinary structure:
UserAccount user = {"Gandalf", 14565.322, 715};
user.name = "Mithrandir";
user.age++;
user.balance *= 2;
Type introspection
Type introspection is supported in the sense that you can query the type properties of ADTs at compile-time and then handle them somehow in your hand-written macros.
Sum types
[examples/introspection/choice.c
]
#include <poica.h>
#include <stdio.h>
#include <boost/preprocessor.hpp>
#define MY_CHOICE \
Something, \
variant(A) \
variant(B, int) \
variantMany(C, field(c1, double) field(c2, char))
choice(MY_CHOICE);
#define Something_INTROSPECT POICA_CHOICE_INTROSPECT(MY_CHOICE)
int main(void) {
puts(BOOST_PP_STRINGIZE(Something_INTROSPECT));
}
<details>
<summary>Output</summary>
((POICA_VARIANT_KIND_EMPTY)(A))
((POICA_VARIANT_KIND_SINGLE)(B)(int))
((POICA_VARIANT_KIND_MANY)(C)( ((c1)(double)) ((c2)(char)) ))
</details>
Product types
[examples/introspection/record.c
]
#include <poica.h>
#include <stdio.h>
#include <boost/preprocessor.hpp>
#define MY_RECORD \
Something, \
field(a, int) \
field(b, const char *) \
field(c, double)
record(MY_RECORD);
#define Something_INTROSPECT POICA_RECORD_INTROSPECT(MY_RECORD)
int main(void) {
puts(BOOST_PP_STRINGIZE(Something_INTROSPECT));
}
<details>
<summary>Output</summary>
((a)(int)) ((b)(const char *)) ((c)(double))
</details>
Metainformation about types is actually a sequence in the terms of Boost/Preprocessor. So the BOOST_PP_SEQ_*
macros can be used further, as well as Boost/VMD and the intrinsics from poica.
Safe, consistent error handling
ADTs provide a safe, consistent approach to error handling. A procedure that can fail returns a sum type, designating either a successful or a failure value, like this:
typedef enum RecvMsgErrKind {
BAD_CONN,
NO_SUCH_USER,
...
} RecvMsgErrKind;
typedef const char *Msg;
DefRes(Msg, RecvMsgErrKind);
P(Res, Msg, RecvMsgErrKind) recv_msg(...) { ... }
And then P(Res, Msg, RecvMsgErrKind)
can be matched to decide what to do in the case of P(Ok, Msg, RecvMsgErrKind)
and P(Err, Msg, RecvMsgErrKind)
:
P(Res, Msg, RecvMsgErrKind) res = recv_msg(...);
match(res) {
of(P(Ok, Msg, RecvMsgErrKind), msg) { ... }
of(P(Err, Msg, RecvMsgErrKind), err_kind) { ... }
}
But why this is better than int
error codes? Because of:
-
Readability. Such identifiers as
Ok
andErr
are more for humans, and therefore, it's much harder to confuse them with each other. In contrast to this, the usual approach in C to determine an error is by using magic ranges (for example, <0 or -1). -
Consistency. No need to invent different strategies to handle different kinds of errors (i.e. using exceptions for less likely errors,
int
codes for a normal control flow, ...); ADTs address the problem of error handling generally. -
Exhaustiveness checking (case analysis). A smart compiler and static analysis tools ensure that all the variants of
Res
are handled inmatch
, so we can't forget to handle an error and make a possibly serious bug by leaving an application work as there's no error, when there is.
ADTs even have advantages over exceptions: they do not perform transformations with a program stack, since they are just values with no implicit logic that can hurt performance.
See examples/error_handling.c
as an example of error handling using ADTs.
Built-in ADTs
ADT | Description | Example |
---|---|---|
Maybe | An optional value | examples/maybe.c |
Either | Either this value or that | examples/either.c |
Pair | A pair of elements | examples/pair.c |
Res | Either a successful or a failure value | examples/error_handling.c |
The last one has been presented in the previous section. All these generic types share the common API:
// Generate a definition of an ADT.
DefX(T1, ..., Tn);
// Generate a type name.
P(X, T1, ..., Tn) = ...;
The utility functions can be found in the specification.
OOP
Interfaces
#include <poica.h>
#include <math.h>
#include <stdio.h>
interface(
Shape,
double (*area)(const void *self);
);
record(
Square,
field(width, double)
field(height, double)
);
record(
Triangle,
field(a, double)
field(b, double)
field(c, double)
);
impl(
(Shape) for (Square),
(double)(area)(const void *self)(
const Square *square = (const Square *)self;
return square->width * square->height;
)
);
impl(
(Shape) for (Triangle),
(double)(area)(const void *self)(
const Triangle *triangle = (const Triangle *)self;
double a = triangle->a, b = triangle->b, c = triangle->c;
double p = (a + b + c) / 2;
return sqrt(p * (p - a) * (p - b) * (p - c));
)
);
int main(void) {
const Square square = { .width = 6, .height = 3.4 };
const Triangle triangle = { .a = 4, .b = 13, .c = 15};
printf("%f\n", iMethods(Shape, Square).area(&square));
printf("%f\n", iMethods(Shape, Triangle).area(&triangle));
}
<details>
<summary>Output</summary>
20.400000
24.000000
</details>
Dynamic dispatch
#include <poica.h>
#include <stdio.h>
interface(
Animal,
void (*noise)(void *self);
);
record(Dog, field(counter, int));
record(Cat, field(counter, int));
impl(
(Animal) for (Dog),
(void)(noise)(void *self)(
Dog *dog = (Dog *)self;
dog->counter++;
printf("Woof! Counter: %d\n", dog->counter);
)
);
impl(
(Animal) for (Cat),
(void)(noise)(void *self)(
Cat *cat = (Cat *)self;
cat->counter++;
printf("Meow! Counter: %d\n", cat->counter);
)
);
int main(void) {
Dog dog = {.counter = 0};
Cat cat = {.counter = 0};
AnimalMut animal;
animal = P(newIObj, AnimalMut, Dog)(&dog);
vCall(animal, noise);
vCall(animal, noise);
vCall(animal, noise);
animal = P(newIObj, AnimalMut, Cat)(&cat);
vCall(animal, noise);
vCall(animal, noise);
}
<details>
<summary>Output</summary>
Woof! Counter: 1
Woof! Counter: 2
Woof! Counter: 3
Meow! Counter: 1
Meow! Counter: 2
</details>
Type-generic programming
This problem is often addressed via void *
in C. However, it has two big disadvantages:
- A compiler is unable to perform type-specific optimisations;
void *
types could be confused with each other;- Not self-documenting.
poica uses a technique called monomorphisation, which means that it'll instantiate your generic types with concrete substitutions after preprocessing, eliminating all the disadvantages of void *
.
Generic types
Below is a trivial implementation of a generic linked list:
[examples/generic_linked_list.c
]
#include <poica.h>
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#define DeclLinkedList(type) \
typedef struct P(LinkedList, type) { \
type *data; \
struct P(LinkedList, type) * next; \
} P(LinkedList, type); \
\
static P(LinkedList, type) * P(listNew, type)(type item); \
static void P(listFree, type)(P(LinkedList, type) * list); \
\
POICA_FORCE_SEMICOLON
#define DefLinkedList(type) \
static P(LinkedList, type) * P(listNew, type)(type item) { \
P(LinkedList, type) *list = malloc(sizeof(*list)); \
assert(list); \
\
list->data = malloc(sizeof(type)); \
assert(list->data); \
memcpy(list->data, &item, sizeof(type)); \
list->next = NULL; \
\
return list; \
} \
\
static void P(listFree, type)(P(LinkedList, type) * list) { \
P(LinkedList, type) *node = list; \
\
do { \
free(node->data); \
P(LinkedList, type) *next_node = node->next; \
free(node); \
node = next_node; \
} while (node); \
} \
\
POICA_FORCE_SEMICOLON
DeclLinkedList(int);
DefLinkedList(int);
int main(void) {
P(LinkedList, int) *list = P(listNew, int)(123);
list->next = P(listNew, int)(456);
list->next->next = P(listNew, int)(789);
P(listFree, int)(list);
}
There's nothing much to say, except that P
(which stands for polymorphic) expands to a unique function or type identifier, e.g. performs type substitution.
Options
There are several options, implemented via macro definitions (turned off by default):
POICA_USE_PREFIX
-- removes all the public unprefixedcamelCase
ed andPascalCase
ed identifiers (match
,DefRes
, ...) from the current translation unit. The prefixed versions (poicaMatch
,PoicaDefRes
, ...) are defined unconditionally.POICA_ENABLE_ASSERTIONS
-- enables some consistency checks on input data to macros. Can increase compilation time!
FAQ
Q: What "poica" means?
A: "poica" is a Quenya word, which means clean, pure. It reflects its API.