Home

Awesome

Duo-SegNet: Adversarial Dual-Views for Semi-Supervised Medical Image Segmentation

This repo contains the supported pytorch code and configuration files to reproduce medical image segmentaion results of Duo-SegNet.

Dual View Architecture

<a href="https://www.codecogs.com/eqnedit.php?latex={\mathcal{F}_i(\cdot)}_{i=1}^2" target="_blank"><img src="https://latex.codecogs.com/gif.latex?{\mathcal{F}_i(\cdot)}_{i=1}^2" title="{\mathcal{F}_i(\cdot)}_{i=1}^2" /></a> and <a href="https://www.codecogs.com/eqnedit.php?latex=\psi&space;(\cdot)" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\psi&space;(\cdot)" title="\psi (\cdot)" /></a> denote Segmentation networks and Critic network. Here, Critic criticizes between prediction masks and the ground truth masks to perform the min-max game.

Environment

Please prepare an environment with python=3.8, and then run the command "pip install -r requirements.txt" for the dependencies.

Data Preparation

Train/Test

python train.py --dataset nuclei --ratio 0.05 --epoch 200
python test.py --dataset nuclei

Acknowledgements

This repository makes liberal use of code from Deep Co-training and pytorch-CycleGAN-and-pix2pix

References

Citing Duo-SegNet

    @inproceedings{peiris2021duo,
      title={Duo-SegNet: Adversarial Dual-Views for Semi-Supervised Medical Image Segmentation},
      author={Peiris, Himashi and Chen, Zhaolin and Egan, Gary and Harandi, Mehrtash},
      booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
      pages={428--438},
      year={2021},
      organization={Springer}
    }