Awesome
Scene Parsing with Global Context Embedding
This repo is the caffe implementation of the following paper:
Scene Parsing with Global Context Embedding <br/> Wei-Chih Hung, Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, and Ming-Hsuan Yang. In ICCV, 2017.
Please cite our paper if you find it useful for your research.
@inproceedings{hung2017scene,
title={Scene Parsing With Global Context Embedding},
author={Hung, Wei-Chih and Tsai, Yi-Hsuan and Shen, Xiaohui and Lin, Zhe and Sunkavalli, Kalyan and Lu, Xin and Yang, Ming-Hsuan},
booktitle={IEEE International Conference on Computer Vision (ICCV)},
year={2017}
}
Prerequisite
- DeepLab-v2 caffe. You will need the this updated version [link] for most recent machine setups.
- A GPU with at least 12GB
Test on ADE20k validation set
- Download the ADE20k dataset and put it in
data/
.
The directories should be like this:
./data/ADE20k/annotations/validation
/images/validation
- Download pretrained model
bash get_model.sh
- Download precomputed context features/priors of ADE20k val set.
bash get_prior.sh
- Execute evaluation script:
python eval.py --prototxt prototxt/ade20k_val.prototxt \
--model models/ade20k_full.caffemodel \
--save-dir results/ade20k/val/ \
--gpu 0
The result images will be saved at results/ade20k/val/
.