Awesome
Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation
This repository contains code for CVPR2024 paper:
Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation
Shuting He, Henghui Ding
CVPR 2024
Installation:
Please see INSTALL.md. Then
pip install -r requirements.txt
python3 -m spacy download en_core_web_sm
Inference
1. Val<sup>u</sup> set
Obtain the output masks of Val<sup>u</sup> set:
python train_net_dshmp.py \
--config-file configs/dshmp_swin_tiny.yaml \
--num-gpus 8 --dist-url auto --eval-only \
MODEL.WEIGHTS [path_to_weights] \
OUTPUT_DIR [output_dir]
Obtain the J&F results on Val<sup>u</sup> set:
python tools/eval_mevis.py
2. Val set
Obtain the output masks of Val set for CodaLab online evaluation:
python train_net_dshmp.py \
--config-file configs/dshmp_swin_tiny.yaml \
--num-gpus 8 --dist-url auto --eval-only \
MODEL.WEIGHTS [path_to_weights] \
OUTPUT_DIR [output_dir] DATASETS.TEST '("mevis_test",)'
Training
Firstly, download the backbone weights (model_final_86143f.pkl
) and convert it using the script:
wget https://dl.fbaipublicfiles.com/maskformer/mask2former/coco/instance/maskformer2_swin_tiny_bs16_50ep/model_final_86143f.pkl
python tools/process_ckpt.py
python tools/get_refer_id.py
Then start training:
python train_net_dshmp.py \
--config-file configs/dshmp_swin_tiny.yaml \
--num-gpus 8 --dist-url auto \
MODEL.WEIGHTS [path_to_weights] \
OUTPUT_DIR [path_to_weights]
Note: We train on a 3090 machine using 8 cards with 1 sample on each card, taking about 17 hours.
Models
☁️ Google Drive
Acknowledgement
This project is based on MeViS. Many thanks to the authors for their great works!
BibTeX
Please consider to cite DsHmp if it helps your research.
@inproceedings{DsHmp,
title={Decoupling static and hierarchical motion perception for referring video segmentation},
author={He, Shuting and Ding, Henghui},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13332--13341},
year={2024}
}