Awesome
Semantic-Promoted Debiasing and Background Disambiguation for Zero-Shot Instance Segmentation
🏠[Project page] 📄[arXiv] 📄[PDF]
This repository contains code for CVPR2023 paper:
Semantic-Promoted Debiasing and Background Disambiguation for Zero-Shot Instance Segmentation Shuting He, Henghui Ding, Wei Jiang
Installation:
The code is tested under CUDA 11.2, Pytorch 1.9.0 and Detectron2 0.6
- Follow the installation process of Mask2Former
- Install other required packages:
pip -r requirements.txt
- Prepare the dataset following
datasets/README.md
Inference
GZSIS Settings:
python train_net.py --config-file configs/d2zero_48_17.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS d2zero_48_17/model_final.pth
ZSIS Settings:
python train_net.py --config-file configs/d2zero_48_17.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS d2zero_48_17/model_final.pth DATASETS.TEST '("coco_zsi_48_17_val_unseen_only",)' MODEL.MASK_FORMER.TEST.GENERALIZED False
Training
python train_net.py --config-file configs/d2zero_48_17.yaml --num-gpus 8
Acknowledgement
This project is based on ZSI, Mask2Former. Many thanks to the authors for their great works!
BibTeX
Please consider citing D2Zero if it helps your research.
@inproceedings{D2Zero,
title={Semantic-Promoted Debiasing and Background Disambiguation for Zero-Shot Instance Segmentation},
author={He, Shuting and Ding, Henghui and Jiang, Wei},
booktitle={CVPR},
year={2023}
}