Awesome
[AAAI 2024] GLOP: Learning Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time
Welcome! This repository contains the code implementation of paper GLOP: Learning Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time. GLOP is a unified hierarchical framework that efficiently scales toward large-scale routing problems. It partitions large routing problems into Travelling Salesman Problems (TSPs) and TSPs into Shortest Hamiltonian Path Problems (SHPPs). We hybridize non-autoregressive neural heuristics for coarse-grained problem partitions and autoregressive neural heuristics for fine-grained route constructions.
News
🚀 Oct 2024: We released a Python library for performing fast random insertion on TSP and SHPP instances
🐛 Jul 2024: Thanks to Wenzheng Pan, we detected a bug in the insertion for ATSP and fixed it. After the bug fix, GLOP achieves better performance on ATSP; see the below table for the updated results. Results on other problems are unaffected.
Version | ATSP150 | ATSP250 | ATSP1000 |
---|---|---|---|
Before | 1.89 (6.4s) | 2.10 (9.6s) | 2.79 (39s) |
After | 1.89 (8.2s) | 2.04 (9.3s) | 2.33 (15s) |
Highlights
- Hybridizing non-autoregressive solvers for problem partitions and autoregressive solvers for solution constructions.
- Competitive performance across large-scale TSP, ATSP, CVRP, and PCTSP.
- State-of-the-art scalability and efficiency: reasonable solutions for TSP100K, etc.
Dependencies
- Python>=3.8
- NumPy 1.23
- PyTorch 1.13.0
- PyTorch Scatter 2.0.7
- PyTorch Sparse 0.6.9
- PyTorch Geometric 2.0.4
- SciPy
- tqdm
How to Use
Resources
-
Download checkpoints from checkpoints-downloading-link and place them in
./pretrained
. -
Download test datasets from test-datasets-downloading-link and place them in
./data
.
Evaluation
To evaluate our method on your own datasets, add --path PATH_OF_YOUR_DATASET
.
For TSP
# For TSP500:
python main.py --problem_size 500 --revision_iters 20 25 5 --revision_lens 100 50 20 --width 10 --eval_batch_size 64 --val_size 128 --decode_strategy greedy
# For TSP1000:
python main.py --problem_size 1000 --revision_iters 20 25 5 --revision_lens 100 50 20 --width 10 --eval_batch_size 32 --val_size 128 --decode_strategy greedy
# For TSP10k:
python main.py --problem_size 10000 --revision_iters 50 25 5 --revision_lens 100 50 20 --width 1 --eval_batch_size 16 --val_size 16 --decode_strategy greedy
# For TSP100k:
python main.py --problem_size 100000 --revision_iters 50 25 5 --revision_lens 100 50 20 --width 1 --eval_batch_size 1 --val_size 1 --decode_strategy greedy
# To conduct cross-distribution evaluation, e.g.:
python main.py --problem_size 100 --revision_lens 100 50 20 10 --revision_iters 20 10 10 5 --width 140 --eval_batch_size 100 --val_size 10000 --decode_strategy sampling --path data/tsp/tsp_uniform100_10000.pkl --no_aug --no_prune
# To reproduce the results of 49 TSPLib instances:
python eval_tsplib.py --eval_batch_size 1 --val_size 49 --path data/tsp/tsplib49.pkl --width 128 --decode_strategy greedy --no_prune
To reduce the inference duration, try:
# set
--width 1
# add
--no_aug
# less revisions, e.g.,
--revision_iters 5 5 5
For ATSP
Please refer to ./eval_atsp/
For CVRP
# For CVRP1K using LKH-3 as sub-solver:
python eval_cvrp.py --cpus 12 --problem_size 1000
# For CVRP1K using neural sub-TSP solver
python main.py --problem_type cvrp --problem_size 1000 --revision_lens 20 --revision_iters 5
# For CVRP2K using LKH-3 as sub-solver:
python eval_cvrp.py --cpus 12 --problem_size 2000
# For CVRP2K using neural sub-TSP solver
python main.py --problem_type cvrp --problem_size 2000 --revision_lens 50 20 --revision_iters 5 5
# For CVRP5K using LKH-3 as sub-solver
python eval_cvrp.py --cpus 12 --problem_size 5000 --ckpt_path pretrained/Partitioner/cvrp/cvrp-2000.pt
# For CVRP5K using neural sub-TSP solver
python main.py --problem_type cvrp --problem_size 5000 --ckpt_path pretrained/Partitioner/cvrp/cvrp-2000.pt --revision_lens 20 --revision_iters 5
# For CVRP7K using LKH-3 as sub-solver
python eval_cvrp.py --cpus 12 --problem_size 7000 --ckpt_path pretrained/Partitioner/cvrp/cvrp-2000.pt
# For CVRP7K using neural sub-TSP solver
python main.py --problem_type cvrp --problem_size 7000 --ckpt_path pretrained/Partitioner/cvrp/cvrp-2000.pt --revision_lens 20 --revision_iters 5
# For CVRPLIB using LKH-3 as sub-solver
python eval_cvrplib.py
# For CVRPLIB using neural sub-TSP solver
python eval_cvrplib_neural.py
For PCTSP
# e.g., for PCTSP500
python main.py --problem_type pctsp --problem_size 500 --n_subset 10 --eval_batch_size 50 --val_size 100 --revision_iters 10 10 5 --revision_lens 100 50 20
# set n_subset = 1 for greedy mode
--n_subset 1
Training
Please refer to READMEs in ./local_construction/
and ./heatmap/*/
.
Citation
🤩 If you encounter any difficulty using our code, please do not hesitate to submit an issue or directly contact us!
😍 If you do find our work helpful (or if you would be so kind as to offer us some encouragement), please consider kindly giving a star, and citing our paper.
@inproceedings{ye2024glop,
title={GLOP: Learning Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time},
author={Ye, Haoran and Wang, Jiarui and Liang, Helan and Cao, Zhiguang and Li, Yong and Li, Fanzhang},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2024},
}
Acknowledgements
- Attention, learn to solve routing problems!
- Learning Collaborative Policies to Solve NP-hard Routing Problems
- Generalize a small pre-trained model to arbitrarily large TSP instances
- Learning generalizable models for vehicle routing problems via knowledge distillation
- Matrix Encoding Networks for Neural Combinatorial Optimization