Awesome
[NeurIPS 2021]-From Canonical Correlation Analysis to Self-supervised Graph Neural Networks
Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.
Dependencies
- Python 3.7
- PyTorch 1.7.1
- dgl 0.6.0
Datasets
Citation Networks: 'Cora', 'Citeseer' and 'Pubmed'.
Co-occurence Networks: 'Amazon-Computer', 'Amazon-Photo', 'Coauthor-CS' and 'Coauthor-Physics'.
Dataset | # Nodes | # Edges | # Classes | # Features |
---|---|---|---|---|
Cora | 2,708 | 10,556 | 7 | 1,433 |
Citeseer | 3,327 | 9,228 | 6 | 3,703 |
Pubmed | 19,717 | 88,651 | 3 | 500 |
Amazon-Computer | 13,752 | 574,418 | 10 | 767 |
Amazon-Photo | 7,650 | 287,326 | 8 | 745 |
Coauthor-CS | 18,333 | 327,576 | 15 | 6,805 |
Coauthor-Physics | 34,493 | 991,848 | 5 | 8,451 |
Usage
To run the codes, use the following commands:
# Cora
python main.py --dataname cora --epochs 50 --lambd 1e-3 --dfr 0.1 --der 0.4 --lr2 1e-2 --wd2 1e-4
# Citeseer
python main.py --dataname citeseer --epochs 20 --n_layers 1 --lambd 5e-4 --dfr 0.0 --der 0.4 --lr2 1e-2 --wd2 1e-2
# Pubmed
python main.py --dataname pubmed --epochs 100 --lambd 1e-3 --dfr 0.3 --der 0.5 --lr2 1e-2 --wd2 1e-4
# Amazon-Computer
python main.py --dataname comp --epochs 50 --lambd 5e-4 --dfr 0.1 --der 0.3 --lr2 1e-2 --wd2 1e-4
# Amazon-Photo
python main.py --dataname photo --epochs 50 --lambd 1e-3 --dfr 0.2 --der 0.3 --lr2 1e-2 --wd2 1e-4
# Coauthor-CS
python main.py --dataname cs --epochs 50 --lambd 1e-3 --dfr 0.2 --lr2 5e-3 --wd2 1e-4 --use_mlp
# Coauthor-Physics
python main.py --dataname physics --epochs 100 --lambd 1e-3 --dfr 0.5 --der 0.5 --lr2 5e-3 --wd2 1e-4
Reference
If our paper and code are useful for your research, please cite the following article:
@inproceedings{zhang2021canonical,
title={From canonical correlation analysis to self-supervised graph neural networks},
author={Zhang, Hengrui and Wu, Qitian and Yan, Junchi and Wipf, David and Philip, S Yu},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021}
}