Home

Awesome

[ECCV 2018] A PyTorch implementation of Patch2Image

Concept

alt text

Examples (Faces)

alt text

Examples (Cars)

alt text

Requirements

Preparing dataset

Download dataset via visiting celebA or CompCar.

For celebA dataset,

You can download using download.py

> python download.py celebA

For compcar dataset, Download the entire compcar dataset and some pre-processing is required.

You should crop the car patches using the ground truth bounding boxes, resize them 128*128 resolution, and save them in a single directory.

Key-patches

We already extracted key patches from celebA and compcar dataset and save the bounding box coordinates to celebA_allbbs.mat and compcar_allbbs.mat.

You can extract key patches and use your own key patches.

Training celebA dataset

Run

python main.py --db_name=celebA --dataset_root=YOUR_DATA_ROOT --is_crop=True --image_size=108 --output_size=64 --model_structure=unet

The resolution of output image can be enlarged by --output_size=128 or --output_size=256 options.

Training compcar dataset

Run

python main.py --db_name=compcar --dataset_root=YOUR_DATA_ROOT --is_crop=False --image_size=128 --output_size=128 --conv_dim=64  --batch_size=32 --model_structure=unet

Misc.

Modify the options output_size, conv_dim, or batch_size to prevent out-of-memory error.