Awesome
OpenNlp
A JRuby wrapper for the Apache OpenNLP tools library, that allows you execute common natural language processing tasks, such as
- sentence detection
- tokenize
- part-of-speech tagging
- named entity extraction
- chunks detection
- parsing
- document categorization
Installation
Add this line to your application's Gemfile:
gem 'open_nlp'
And then execute:
$ bundle
Or install it yourself as:
$ gem install open_nlp
Usage
To use open_nlp classes, you need to require it in your sources
require 'open_nlp'
Then you can create instances of open_nlp classes and use it for your nlp tasks
Sentence detection
sentence_detect_model = OpenNlp::Model::SentenceDetector.new("nlp_models/en-sent.bin")
sentence_detector = OpenNlp::SentenceDetector.new(sentence_detect_model)
# get sentences as array of strings
sentence_detector.detect('The red fox sleeps soundly.')
# get array of OpenNLP::Util::Span objects:
sentence_detector.pos_detect('"The sky is blue. The Grass is green."')
Tokenize
token_model = OpenNlp::Model::Tokenizer.new("nlp_models/en-token.bin")
tokenizer = OpenNlp::Tokenizer.new(token_model)
tokenizer.tokenize('The red fox sleeps soundly.')
Part-of-speech tagging
pos_model = OpenNlp::Model::POSTagger.new(File.join("nlp_models/en-pos-maxent.bin"))
pos_tagger = OpenNlp::POSTagger.new(pos_model)
# to tag string call OpenNlp::POSTagger#tag with String argument
pos_tagger.tag('The red fox sleeps soundly.')
# to tag array of tokens call OpenNlp::POSTagger#tag with Array argument
pos_tagger.tag(%w|The red fox sleeps soundly .|)
Chunks detection
# chunker also needs tokenizer and pos-tagger models
# because it uses tokenizing and pos-tagging inside chunk task
chunk_model = OpenNlp::Model::Chunker.new(File.join("nlp_models/en-chunker.bin"))
token_model = OpenNlp::Model::Tokenizer.new("nlp_models/en-token.bin")
pos_model = OpenNlp::Model::POSTagger.new(File.join("nlp_models/en-pos-maxent.bin"))
chunker = OpenNlp::Chunker.new(chunk_model, token_model, pos_model)
chunker.chunk('The red fox sleeps soundly.')
Parsing
# parser also needs tokenizer model because it uses tokenizer inside parse task
parse_model = OpenNlp::Model::Parser.new(File.join("nlp_models/en-parser-chunking.bin"))
token_model = OpenNlp::Model::Tokenizer.new("nlp_models/en-token.bin")
parser = OpenNlp::Parser.new(parse_model, token_model)
# the result will be an instance of OpenNlp::Parser::Parse
parse_info = parser.parse('The red fox sleeps soundly.')
# you can get tree bank string by calling
parse_info.tree_bank_string
# you can get code tree structure of parse result by calling
parse_info.code_tree
Categorizing
doccat_model = OpenNlp::Model::Parser.new(File.join("nlp_models/en-doccat.bin"))
categorizer = OpenNlp::Categorizer.new(doccat_model)
categorizer.categorize("Quick brown fox jumps very bad.")
Contributing
- Fork it
- Create your feature branch (
git checkout -b my-new-feature
) - Commit your changes (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin my-new-feature
) - Create new Pull Request