Home

Awesome

ESTool

<center> <img src="https://cdn.jsdelivr.net/gh/hardmaru/pybullet_animations@f6f7fcd72ded6b1772b1b21462dff69e93f94520/anim/biped/biped_cma.gif" width="100%"/> <i>Evolved Biped Walker.</i><br/> </center> <p></p>

Implementation of various Evolution Strategies, such as GA, Population-based REINFORCE (Section 6 of Williams 1992), CMA-ES and OpenAI's ES using common interface.

CMA-ES is wrapping around pycma.

Notes

The tool last tested using the following configuration:

Backround Reading:

A Visual Guide to Evolution Strategies

Evolving Stable Strategies

Using Evolution Strategies Library

To use es.py, please check out the simple_es_example.ipynb notebook.

The basic concept is:

solver = EvolutionStrategy()
while True:

  # ask the ES to give us a set of candidate solutions
  solutions = solver.ask()

  # create an array to hold the solutions.
  # solver.popsize = population size
  rewards = np.zeros(solver.popsize)

  # calculate the reward for each given solution
  # using your own evaluate() method
  for i in range(solver.popsize):
    rewards[i] = evaluate(solutions[i])

  # give rewards back to ES
  solver.tell(rewards)

  # get best parameter, reward from ES
  reward_vector = solver.result()

  if reward_vector[1] > MY_REQUIRED_REWARD:
    break

Parallel Processing Training with MPI

Please read Evolving Stable Strategies article for more demos and use cases.

To use the training tool (relies on MPI):

python train.py bullet_racecar -n 8 -t 4

will launch training jobs with 32 workers (using 8 MPI processes). the best model will be saved as a .json file in log/. This model should train in a few minutes on a 2014 MacBook Pro.

If you have more compute and have access to a 64-core CPU machine, I recommend:

python train.py name_of_environment -e 16 -n 64 -t 4

This will calculate fitness values based on an average of 16 random runs, on 256 workers (64 MPI processes x 4). In my experience this works reasonably well for most tasks inside config.py.

After training, to run pre-trained models:

python model.py bullet_ant log/name_of_your_json_file.json

Self-Contained Cartpole Swingup Task

<center> <img src="https://rawcdn.githack.com/hardmaru/estool/6cf3b91a0bd840286002884b6a3fa56887ca7e2c/img/cartpole_swingup.gif" width="100%"/><br/> </center>

If you don't want to install a physics engine, try it on the cartpole_swingup task that doesn't have any dependencies:

Training command:

python train.py cartpole_swingup -n 8 -e 1 -t 4 --sigma_init 1.0

After 400 generations, the final average score (over 32 trials) should be over 900. You can run it with this command:

python model.py cartpole_swingup log/cartpole_swingup.cma.1.32.best.json

If you haven't bothered to run the previous training command, you can load the pre-trained version:

python model.py cartpole_swingup zoo/cartpole_swingup.cma.json

Self-Contained Slime Volleyball Gym Environment

<center> <img src="https://otoro.net/img/slimegym/state.gif" width="100%"/><br/> </center>

Here is an example for training slime volleyball gym environment:

Training command:

python train.py slimevolley -n 8 -e 8 -t 4 --sigma_init 0.5

Pre-trained model:

python model.py slimevolley zoo/slimevolley.cma.64.96.best.json

PyBullet Envs

<center> <!--<img src="{{ site.baseurl }}/assets/20171109/biped/bipedcover.gif" width="100%"/><br/>--> <!--<img src="{{ site.baseurl }}/assets/20171109/kuka/kuka.gif" width="100%"/><br/>--> <img src="https://cdn.jsdelivr.net/gh/hardmaru/pybullet_animations@f6f7fcd72ded6b1772b1b21462dff69e93f94520/anim/robo/bullet_ant_demo.gif" width="50%"/><br/> <i>bullet_ant pybullet environment. Population-based REINFORCE.</i><br/> </center> <p></p>

Another example: to run a minitaur duck model, run this locally:

python model.py bullet_minitaur_duck zoo/bullet_minitaur_duck.cma.256.json
<center> <!--<img src="{{ site.baseurl }}/assets/20171109/biped/bipedcover.gif" width="100%"/><br/>--> <!--<img src="{{ site.baseurl }}/assets/20171109/kuka/kuka.gif" width="100%"/><br/>--> <img src="https://cdn.jsdelivr.net/gh/hardmaru/pybullet_animations@8a6ccaf53456f6fa9e85e258e10f9fa917261571/anim/minitaur/duck_normal_small.gif" width="100%"/><br/> <i>Custom Minitaur Env.</i><br/> </center> <p></p>

In the .hist.json file, and on the screen output, we track the progress of training. The ordering of fields are:

Using plot_training_progress.ipynb in an IPython notebook, you can plot the traning logs for the .hist.json files. For example, in the bullet_ant task:

<center> <img src="https://cdn.jsdelivr.net/gh/hardmaru/pybullet_animations@5a3847d0bd8407781dc931fdff2fc80f0315ab20/svg/bullet_ant.svg" width="100%"/><br/> <i>Bullet Ant training progress.</i><br/> </center> <p></p>

You need to install mpi4py, pybullet, gym etc to use various environments. Also roboschool/Box2D for some of the OpenAI gym envs.

On Windows, it is easiest to install mpi4py as follows:

git clone https://github.com/mpi4py/mpi4py
cd mpi4py
python setup.py install

Modify the train.py script and replace mpirun with mpiexec and -np with -n

Citation

If you find this work useful, please cite it as:

@article{ha2017evolving,
  title   = "Evolving Stable Strategies",
  author  = "Ha, David",
  journal = "blog.otoro.net",
  year    = "2017",
  url     = "http://blog.otoro.net/2017/11/12/evolving-stable-strategies/"
}