Awesome
Siamese Deep Neural Networks for Stereo Matching
A Tensorflow implementation of the models described in the paper Efficient Deep Learning for Stereo Matching. This implementation is based on the one provided by the authors of the paper at: https://bitbucket.org/saakuraa/cvpr16_stereo_public/overview
Architecture of the win37_dep9 network:
Global view
Detailed view
Installation
-
Install Tensorflow
-
Clone the repository
git clone https://github.com/fjulca-aguilar/dl_stereo_matching.git
Training new models
New models can be trained using
python train.py --util_root=PATH_BINARY \
--data_root=PATH_DATABASE \
--net_type=win19_dep9 \
--patch_size=19 \
--model_dir=MODEL_DIR \
--phase=train &
The training and evaluation schemes use the same training data and similar parameters to the ones defined at https://bitbucket.org/saakuraa/cvpr16_stereo_public/overview
Training evolution and graphs can be seen using Tensorboard. The following image shows examples of Cross-entropy Loss evolution for 40 000 training steps (horizontal axes represent the the number of iterations * 100): (blue = win19_dep9, green = win37_dep9)
Evaluation on validation patches
Trained models can be evaluated on validation patches using
python train.py --util_root=PATH_BINARY \
--data_root=PATH_DATABASE \
--net_type=win19_dep9 \
--patch_size=19
--model_dir=MODEL_DIR
--phase=evaluate &
Testing on images
Evaluation on images can be done using
python test_images.py \
--out_dir=OUT_IMAGES_DIR \
--model_dir=MODEL_DIR \
--data_root=PATH_DATABASE \
--util_root= PATH_BINARY\
--net_type=win19_dep9 \
--patch_size=19 \
--num_imgs=10 &
The script generates num_imgs
disparity images and saves them
at the OUT_IMAGES_DIR directory